IDEAS home Printed from https://ideas.repec.org/a/plo/pdig00/0000045.html
   My bibliography  Save this article

Population analysis of mortality risk: Predictive models from passive monitors using motion sensors for 100,000 UK Biobank participants

Author

Listed:
  • Haowen Zhou
  • Ruoqing Zhu
  • Anita Ung
  • Bruce Schatz

Abstract

Many studies have utilized physical activity for predicting mortality risk, using measures such as participant walk tests and self-reported walking pace. The rise of passive monitors to measure participant activity without requiring specific actions opens the possibility for population level analysis. We have developed novel technology for this predictive health monitoring, using limited sensor inputs. In previous studies, we validated these models in clinical experiments with carried smartphones, using only their embedded accelerometers as motion sensors. Using smartphones as passive monitors for population measurement is critically important for health equity, since they are already ubiquitous in high-income countries and increasingly common in low-income countries. Our current study simulates smartphone data by extracting walking window inputs from wrist worn sensors. To analyze a population at national scale, we studied 100,000 participants in the UK Biobank who wore activity monitors with motion sensors for 1 week. This national cohort is demographically representative of the UK population, and this dataset represents the largest such available sensor record. We characterized participant motion during normal activities, including daily living equivalent of timed walk tests. We then compute walking intensity from sensor data, as input to survival analysis. Simulating passive smartphone monitoring, we validated predictive models using only sensors and demographics. This resulted in C-index of 0.76 for 1-year risk decreasing to 0.73 for 5-year. A minimum set of sensor features achieves C-index of 0.72 for 5-year risk, which is similar accuracy to other studies using methods not achievable with smartphone sensors. The smallest minimum model uses average acceleration, which has predictive value independent of demographics of age and sex, similar to physical measures of gait speed. Our results show passive measures with motion sensors can achieve similar accuracy to active measures of gait speed and walk pace, which utilize physical walk tests and self-reported questionnaires.Author summary: Healthcare infrastructure implementation could benefit tremendously from national scale screening with passive monitors. Large scale population data could delineate health risks without intruding into daily living. Digital health offers potential solutions if sensor devices of adequate accuracy for predictive models could be widely deployed. The only such current devices are cheap phones, smartphone devices with embedded accelerometers. This limits measures to motion sensor data collected when the phones are carried during normal activities. So measuring walking intensity is possible, but the total activity measure that is possible with 24-hour wearable devices is not. Our study simulates the use of smartphone sensors to predict mortality risk in the largest national cohort with sensor records, the demographically representative UK Biobank. Mortality is the most definitive outcome, with accurate death records for five years available for the 100,000 participants who wore sensor devices. We analyzed this dataset to extract walking sessions during daily living, then used characteristic motions of these walking sessions to predict mortality risk. The accuracy achieved was similar to activity monitors measuring total activity and even similar to physical measures such as gait speed during observed walks. Our scalable methods offer a feasible pathway towards national screening for health risk.

Suggested Citation

  • Haowen Zhou & Ruoqing Zhu & Anita Ung & Bruce Schatz, 2022. "Population analysis of mortality risk: Predictive models from passive monitors using motion sensors for 100,000 UK Biobank participants," PLOS Digital Health, Public Library of Science, vol. 1(10), pages 1-22, October.
  • Handle: RePEc:plo:pdig00:0000045
    DOI: 10.1371/journal.pdig.0000045
    as

    Download full text from publisher

    File URL: https://journals.plos.org/digitalhealth/article?id=10.1371/journal.pdig.0000045
    Download Restriction: no

    File URL: https://journals.plos.org/digitalhealth/article/file?id=10.1371/journal.pdig.0000045&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pdig.0000045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    2. Simon, Noah & Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2011. "Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i05).
    3. repec:plo:pmed00:1001779 is not listed on IDEAS
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao Zhu, 2021. "The Adaptive Multi-Factor Model and the Financial Market," Papers 2107.14410, arXiv.org, revised Aug 2021.
    2. Marton Gosztonyi, 2023. "Comparative Analysis of X-Y-Z Generation Entrepreneurs in a Semi-Peripheral EU Member Country: Insights from Regularized Regression Techniques," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 191-217.
    3. Yoonsuh Jung, 2018. "Multiple predicting K-fold cross-validation for model selection," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(1), pages 197-215, January.
    4. Zhixuan Fu & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized variable selection in competing risks regression," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 353-376, July.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    7. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    8. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    9. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    10. Gustavo A. Alonso-Silverio & Víctor Francisco-García & Iris P. Guzmán-Guzmán & Elías Ventura-Molina & Antonio Alarcón-Paredes, 2021. "Toward Non-Invasive Estimation of Blood Glucose Concentration: A Comparative Performance," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    11. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    12. Gurgul Henryk & Machno Artur, 2017. "Trade Pattern on Warsaw Stock Exchange and Prediction of Number of Trades," Statistics in Transition New Series, Statistics Poland, vol. 18(1), pages 91-114, March.
    13. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    14. Michael Funke & Kadri Männasoo & Helery Tasane, 2023. "Regional Economic Impacts of the Øresund Cross-Border Fixed Link: Cui Bono?," CESifo Working Paper Series 10557, CESifo.
    15. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    17. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    18. Capanu, Marinela & Giurcanu, Mihai & Begg, Colin B. & Gönen, Mithat, 2023. "Subsampling based variable selection for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    19. Abhinav Kaushik & Diane Dunham & Xiaorui Han & Evan Do & Sandra Andorf & Sheena Gupta & Andrea Fernandes & Laurie Elizabeth Kost & Sayantani B. Sindher & Wong Yu & Mindy Tsai & Robert Tibshirani & Sco, 2022. "CD8+ T cell differentiation status correlates with the feasibility of sustained unresponsiveness following oral immunotherapy," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pdig00:0000045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: digitalhealth (email available below). General contact details of provider: https://journals.plos.org/digitalhealth .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.