IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0274384.html
   My bibliography  Save this article

Prediction model for an early revision for dislocation after primary total hip arthroplasty

Author

Listed:
  • Oskari Pakarinen
  • Mari Karsikas
  • Aleksi Reito
  • Olli Lainiala
  • Perttu Neuvonen
  • Antti Eskelinen

Abstract

Dislocation is one of the most common complications after primary total hip arthroplasty (THA). Several patient-related risk factors for dislocation have been reported in the previous literature, but only few prediction models for dislocation have been made. Our aim was to build a prediction model for an early (within the first 2 years) revision for dislocation after primary THA using two different statistical methods. The study data constituted of 37 pre- or perioperative variables and postoperative follow-up data of 16 454 primary THAs performed at our institution in 2008–2021. Model I was a traditional logistic regression model and Model II was based on the elastic net method that utilizes machine learning. The models’ overall performance was measured using the pseudo R2 values. The discrimination of the models was measured using C-index in Model I and Area Under the Curve (AUC) in Model II. Calibration curves were made for both models. At 2 years postoperatively, 95 hips (0.6% prevalence) had been revised for dislocation. The pseudo R2 values were 0.04 in Model I and 0.02 in Model II indicating low predictive capability in both models. The C-index in Model I was 0.67 and the AUC in Model II was 0.73 indicating modest discrimination. The prediction of an early revision for dislocation after primary THA is difficult even in a large cohort of patients with detailed data available because of the reasonably low prevalence and multifactorial nature of dislocation. Therefore, the risk of dislocation should be kept in mind in every primary THA, whether the patient has predisposing factors for dislocation or not. Further, when conducting a prediction model, sophisticated methods that utilize machine learning may not necessarily offer significant advantage over traditional statistical methods in clinical setup.

Suggested Citation

  • Oskari Pakarinen & Mari Karsikas & Aleksi Reito & Olli Lainiala & Perttu Neuvonen & Antti Eskelinen, 2022. "Prediction model for an early revision for dislocation after primary total hip arthroplasty," PLOS ONE, Public Library of Science, vol. 17(9), pages 1-13, September.
  • Handle: RePEc:plo:pone00:0274384
    DOI: 10.1371/journal.pone.0274384
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274384
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274384&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0274384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kaneko, Takeshi & Hirakawa, Kazuo & Fushimi, Kiyohide, 2014. "Relationship between peri-operative outcomes and hospital surgical volume of total hip arthroplasty in Japan," Health Policy, Elsevier, vol. 117(1), pages 48-53.
    2. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    3. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank, Research and Statistics Department.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross-border bank claims: The role of foreign-owned banks in emerging countries," Working Papers 2023.06, International Network for Economic Research - INFER.
    10. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    11. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    15. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    16. Jaime Oliver Huidobro & Alberto Antonioni & Francesca Lipari & Ignacio Tamarit, 2022. "Social capital as a network measure provides new insights on economic growth," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-18, August.
    17. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    18. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.