Author
Listed:
- Oskari Pakarinen
- Mari Karsikas
- Aleksi Reito
- Olli Lainiala
- Perttu Neuvonen
- Antti Eskelinen
Abstract
Dislocation is one of the most common complications after primary total hip arthroplasty (THA). Several patient-related risk factors for dislocation have been reported in the previous literature, but only few prediction models for dislocation have been made. Our aim was to build a prediction model for an early (within the first 2 years) revision for dislocation after primary THA using two different statistical methods. The study data constituted of 37 pre- or perioperative variables and postoperative follow-up data of 16 454 primary THAs performed at our institution in 2008–2021. Model I was a traditional logistic regression model and Model II was based on the elastic net method that utilizes machine learning. The models’ overall performance was measured using the pseudo R2 values. The discrimination of the models was measured using C-index in Model I and Area Under the Curve (AUC) in Model II. Calibration curves were made for both models. At 2 years postoperatively, 95 hips (0.6% prevalence) had been revised for dislocation. The pseudo R2 values were 0.04 in Model I and 0.02 in Model II indicating low predictive capability in both models. The C-index in Model I was 0.67 and the AUC in Model II was 0.73 indicating modest discrimination. The prediction of an early revision for dislocation after primary THA is difficult even in a large cohort of patients with detailed data available because of the reasonably low prevalence and multifactorial nature of dislocation. Therefore, the risk of dislocation should be kept in mind in every primary THA, whether the patient has predisposing factors for dislocation or not. Further, when conducting a prediction model, sophisticated methods that utilize machine learning may not necessarily offer significant advantage over traditional statistical methods in clinical setup.
Suggested Citation
Oskari Pakarinen & Mari Karsikas & Aleksi Reito & Olli Lainiala & Perttu Neuvonen & Antti Eskelinen, 2022.
"Prediction model for an early revision for dislocation after primary total hip arthroplasty,"
PLOS ONE, Public Library of Science, vol. 17(9), pages 1-13, September.
Handle:
RePEc:plo:pone00:0274384
DOI: 10.1371/journal.pone.0274384
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0274384. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.