IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i4p1383-1402.html
   My bibliography  Save this article

Forecasting the Volatility of US Oil and Gas Firms With Machine Learning

Author

Listed:
  • Juan D. Díaz
  • Erwin Hansen
  • Gabriel Cabrera

Abstract

Forecasting the realized volatility of oil and gas firms is of interest to investors and practitioners trading on the energy spot and derivative markets. In this paper, we assess whether several machine learning (ML) techniques can offer superior forecasts compared to HAR models for predicting realized volatility at the firm level. Moreover, we investigate whether economically motivated variables and technical indicators contain valuable information for forecasting firm volatility beyond those contained in various volatility factors previously identified in the literature. Our results demonstrate that certain ML techniques provide superior forecasting accuracy compared to the benchmark model. Additionally, we identify variables such as the 1‐month treasury bill and the aggregate VIX index as significant drivers of realized firm volatility in the oil and gas industry.

Suggested Citation

  • Juan D. Díaz & Erwin Hansen & Gabriel Cabrera, 2025. "Forecasting the Volatility of US Oil and Gas Firms With Machine Learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1383-1402, July.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1383-1402
    DOI: 10.1002/for.3245
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3245
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:4:p:1383-1402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.