Author
Abstract
Population growth, rapid developments in technology, increase in living standards, changes in the household structure and economic structure of societies, and the increase in urbanization at very high rates, as well as the increase in the demand for renting or purchasing real estate, have both expanded the real estate market and made it more active. This intense activity in the real estate markets also accelerates real estate price prediction studies in direct proportion. The aim of this study is to present a model architecture that can achieve high accuracy in predicting the current market value of real estates by using a hybrid approach, through clustering models as a preliminary approach, in order to achieve higher homogeneity with stacking ensemble using multiple machine learning methods. In order to obtain more homogeneous submarkets, the collected data set was first grouped according to the number of rooms and then each group was divided into clusters by cluster analysis. In this way, more homogeneous submarkets were obtained and predict accuracy was improved. Then, the training process was carried out for 13 different weak learners using fivefold cross-validation for each determined sub-market. Feature selection and parameter optimization were performed separately for each weak learner. Then, the predictions obtained according to the feature and parameter set that gave the best results were used to train the meta-learner. As a result of this entire process, the final prediction was created with the meta learner that gave the least error rate. As the findings show, high predicting performance at international standards has been demonstrated even in a period of high price fluctuations for many and various sub-markets of real estate.
Suggested Citation
Cihan Çılgın & Hadi Gökçen, 2025.
"A Hybrid Machine Learning Model Architecture with Clustering Analysis and Stacking Ensemble for Real Estate Price Prediction,"
Computational Economics, Springer;Society for Computational Economics, vol. 66(1), pages 127-178, July.
Handle:
RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10703-4
DOI: 10.1007/s10614-024-10703-4
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10703-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.