IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v59y2025i2d10.1007_s11135-025-02080-3.html
   My bibliography  Save this article

Predictions of residential property price indices for China via machine learning models

Author

Listed:
  • Bingzi Jin

    (Advanced Micro Devices (China) Co., Ltd.)

  • Xiaojie Xu

    (North Carolina State University)

Abstract

The Chinese real estate market has expanded at such a quick rate over the last two decades, up to the current decline patterns that began at the end of 2021. As a result, predicting future property prices has become a significant challenge for both the government and investors. Within the scope of this investigation, we investigate quarterly national residential property price indices for China with data sourced from Bank for International Settlements from the second quarter of 2005 to the first quarter of 2024 by using Gaussian process regressions with a variety of kernels and basis functions. For the purpose of model training and conducting forecasting exercises using the estimated models, we make utilisation of cross-validation and Bayesian optimisations based upon the expected improvement per second plus algorithm. Use of Bayesian optimisations could help endow Gaussian process regression models with good flexibility for forecasting into the future. With a relative root mean square error of 0.1291 percent, root mean square error of 0.1816, mean absolute error of 0.1527, and correlation coefficient of 99.901%, the created models were able to reliably anticipate the price indices from the third quarter of 2020 to the first quarter of 2024 out of sample. The constructed Gaussian process regression models also outperform several alternative machine learning models and econometric models. Their forecast performance is robust to different out-of-sample evaluation periods as well. In order to build hypotheses about trends in the residential real estate price index and to carry out more policy research, our findings might be used either alone or in combination with other projections.

Suggested Citation

  • Bingzi Jin & Xiaojie Xu, 2025. "Predictions of residential property price indices for China via machine learning models," Quality & Quantity: International Journal of Methodology, Springer, vol. 59(2), pages 1481-1513, April.
  • Handle: RePEc:spr:qualqt:v:59:y:2025:i:2:d:10.1007_s11135-025-02080-3
    DOI: 10.1007/s11135-025-02080-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11135-025-02080-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11135-025-02080-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:59:y:2025:i:2:d:10.1007_s11135-025-02080-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.