IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i7p2899-d341749.html
   My bibliography  Save this article

Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence

Author

Listed:
  • Jun Kang

    (Graduate Program in Investment Information Engineering, Yonsei University, Seoul 03722, Korea)

  • Hyun Jun Lee

    (Department of Industrial Engineering, Yonsei University, Seoul 03722, Korea)

  • Seung Hwan Jeong

    (Department of Industrial Engineering, Yonsei University, Seoul 03722, Korea)

  • Hee Soo Lee

    (Department of Business Administration, Sejong University, Seoul 05006, Korea)

  • Kyong Joo Oh

    (Department of Industrial Engineering, Yonsei University, Seoul 03722, Korea)

Abstract

The real estate auction market has become increasingly important in the financial, economic and investment fields, but few artificial intelligence-based studies have attempted to forecast the auction prices of real estate. The purpose of this study is to develop forecasting models of real estate auction prices using artificial intelligence and statistical methodologies. The forecasting models are developed through a regression model, an artificial neural network and a genetic algorithm. For empirical analysis, we use Seoul apartment auction data from 2013 to 2017 to predict the auction prices and compare the forecasting accuracy of the models. The genetic algorithm model has the best performance, and effective regional segmentation based on the auction appraisal price improves the predictive accuracy.

Suggested Citation

  • Jun Kang & Hyun Jun Lee & Seung Hwan Jeong & Hee Soo Lee & Kyong Joo Oh, 2020. "Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2899-:d:341749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/7/2899/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/7/2899/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Limsombunchai, Visit, 2004. "House Price Prediction: Hedonic Price Model vs. Artificial Neural Network," 2004 Conference, June 25-26, 2004, Blenheim, New Zealand 97781, New Zealand Agricultural and Resource Economics Society.
    2. Stevenson, Simon & Young, James & Gurdgiev, Constantin, 2010. "A comparison of the appraisal process for auction and private treaty residential sales," Journal of Housing Economics, Elsevier, vol. 19(2), pages 145-154, June.
    3. Elaine M. Worzala & Margarita Lenk & Ana Silva, 1995. "An Exploration of Neural Networks and Its Application to Real Estate Valuation," Journal of Real Estate Research, American Real Estate Society, vol. 10(2), pages 185-202.
    4. Gorr, Wilpen L. & Nagin, Daniel & Szczypula, Janusz, 1994. "Comparative study of artificial neural network and statistical models for predicting student grade point averages," International Journal of Forecasting, Elsevier, vol. 10(1), pages 17-34, June.
    5. W.J. McCluskey & M. McCord & P.T. Davis & M. Haran & D. McIlhatton, 2013. "Prediction accuracy in mass appraisal: a comparison of modern approaches," Journal of Property Research, Taylor & Francis Journals, vol. 30(4), pages 239-265, December.
    6. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    7. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    8. Bernard Rosner, 1982. "A Generalization of the Paired T‐Test," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 31(1), pages 9-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Torres-Pruñonosa & Pablo García-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
    2. Mehmet Emin Tabar & Aziz Sisman & Yasemin Sisman, 2023. "A Real Estate Appraisal Model with Artificial Neural Networks and Fuzzy Logic: A Local Case Study of Samsun City," International Real Estate Review, Global Social Science Institute, vol. 26(4), pages 565-581.
    3. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    4. Núñez Tabales, Julia M. & Caridad y Ocerin, José María & Rey Carmona, Francisco J., 2013. "Artificial Neural Networks for Predicting Real Estate Prices || Redes neuronales artificiales para la predicción de precios inmobiliarios," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 15(1), pages 29-44, June.
    5. Roberto Patuelli & Aura Reggiani & Peter Nijkamp & Norbert Schanne, 2011. "Neural networks for regional employment forecasts: are the parameters relevant?," Journal of Geographical Systems, Springer, vol. 13(1), pages 67-85, March.
    6. Manuel Landajo & Celia Bilbao & Amelia Bilbao, 2012. "Nonparametric neural network modeling of hedonic prices in the housing market," Empirical Economics, Springer, vol. 42(3), pages 987-1009, June.
    7. Camilo Serrano & Martin Hoesli, 2010. "Are Securitized Real Estate Returns more Predictable than Stock Returns?," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 170-192, August.
    8. Jane Binner & Rakesh Bissoondeeal & Thomas Elger & Alicia Gazely & Andrew Mullineux, 2005. "A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia," Applied Economics, Taylor & Francis Journals, vol. 37(6), pages 665-680.
    9. Jose Torres-Pruñonosa & Pablo García-Estévez & Camilo Prado-Román, 2021. "Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing," Mathematics, MDPI, vol. 9(7), pages 1-16, April.
    10. Sen Cheong Kon & Lindsay W. Turner, 2005. "Neural Network Forecasting of Tourism Demand," Tourism Economics, , vol. 11(3), pages 301-328, September.
    11. Renigier-Biłozor Małgorzata & Wiśniewski Radosław, 2012. "The Impact of Macroeconomic Factors on Residential Property Price Indices in Europe," Folia Oeconomica Stetinensia, Sciendo, vol. 12(2), pages 103-125, December.
    12. Vladimir Vargas-Calder'on & Jorge E. Camargo, 2020. "Towards robust and speculation-reduction real estate pricing models based on a data-driven strategy," Papers 2012.09115, arXiv.org.
    13. Thomas R. Cook & Greg Gupton & Zach Modig & Nathan M. Palmer, 2021. "Explaining Machine Learning by Bootstrapping Partial Dependence Functions and Shapley Values," Research Working Paper RWP 21-12, Federal Reserve Bank of Kansas City.
    14. Renigier-Biłozor, Malgorzata & Janowski, Artur & d’Amato, Maurizio, 2019. "Automated Valuation Model based on fuzzy and rough set theory for real estate market with insufficient source data," Land Use Policy, Elsevier, vol. 87(C).
    15. Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
    16. Curry, B. & Morgan, P.H., 2006. "Model selection in Neural Networks: Some difficulties," European Journal of Operational Research, Elsevier, vol. 170(2), pages 567-577, April.
    17. William Cheung & Lewen Guo & Yuichiro Kawaguchi, 2021. "Automated valuation model for residential rental markets: evidence from Japan," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-34, December.
    18. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    19. repec:dgr:vuarem:2009-14 is not listed on IDEAS
    20. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    21. Helga Flavia Tothăzan & Adela Deaconu, 2020. "Neuronal Network Artificial Model for Real Estate Appraisal: Logic, controversies, and utility for the Romanian context," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 1093-1100, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:7:p:2899-:d:341749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.