IDEAS home Printed from
   My bibliography  Save this article

Predicting Housing Value: A Comparison of Multiple Regression Analysis and Artificial Neural Networks


  • Nghiep Nguyen

    () (Middle Tennessee State University, Murfreesboro, TN)

  • Al Cripps

    () (Middle Tennessee State University, Murfreesboro, TN)


This paper compares the predictive performance of artificial neural networks (ANN) and multiple regression analysis (MRA) for single family housing sales. Multiple comparisons are made between the two data models in which the data sample size is varied, the funcional specifications is varied, and the temporal prediction is varied. We conclude that ANN performs better than MRA when a moderate to large data sample size is used. For our application, this "moderate to large data sample size" varied from 13% to 39% of the total data sample (506 to 1506 observations out of 3906 total observations). Our results give a plausible explanation why previous papers have obtained varied results when comparing MRA and ANN predictive performance for housing values.

Suggested Citation

  • Nghiep Nguyen & Al Cripps, 2001. "Predicting Housing Value: A Comparison of Multiple Regression Analysis and Artificial Neural Networks," Journal of Real Estate Research, American Real Estate Society, vol. 22(3), pages 313-336.
  • Handle: RePEc:jre:issued:v:22:n:3:2001:p:313-336

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    References listed on IDEAS

    1. Goodman, Allen C., 1978. "Hedonic prices, price indices and housing markets," Journal of Urban Economics, Elsevier, vol. 5(4), pages 471-484, October.
    2. Linneman, Peter, 1980. "Some empirical results on the nature of the hedonic price function for the urban housing market," Journal of Urban Economics, Elsevier, vol. 8(1), pages 47-68, July.
    3. Grether, D. M. & Mieszkowski, Peter, 1974. "Determinants of real estate values," Journal of Urban Economics, Elsevier, vol. 1(2), pages 127-145, April.
    4. Halvorsen, Robert & Pollakowski, Henry O., 1981. "Choice of functional form for hedonic price equations," Journal of Urban Economics, Elsevier, vol. 10(1), pages 37-49, July.
    5. A. Quang Do & G. Grudnitski, 1993. "A Neural Network Analysis of the Effect of Age on Housing Values," Journal of Real Estate Research, American Real Estate Society, vol. 8(2), pages 253-264.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Camilo Serrano & Martin Hoesli, 2010. "Are Securitized Real Estate Returns more Predictable than Stock Returns?," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 170-192, August.
    2. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    3. repec:ipg:wpaper:2014-473 is not listed on IDEAS
    4. Christian Pierdzioch, 2012. "Macroeconomic Factors and the German Real Estate Market: A Stock-Market-Based Forecasting Experiment," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 87-96, May.
    5. Antipov, Evgeny & Pokryshevskaya, Elena, 2010. "Mass appraisal of residential apartments: An application of Random forest for valuation and a CART-based approach for model diagnostics," MPRA Paper 27645, University Library of Munich, Germany.
    6. Craig Ellis & Patrick J. Wilson & Ralf Zurbruegg, 2007. "Real Estate ‘Value’ Stocks and International Diversification," Journal of Property Research, Taylor & Francis Journals, vol. 24(3), pages 265-287, September.
    7. Elena B. Pokryshevskaya & Evgeny A. Antipov, 2011. "Applying a CART-based approach for the diagnostics of mass appraisal models," Economics Bulletin, AccessEcon, vol. 31(3), pages 2521-2528.

    More about this item

    JEL classification:

    • L85 - Industrial Organization - - Industry Studies: Services - - - Real Estate Services


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jre:issued:v:22:n:3:2001:p:313-336. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (JRER Graduate Assistant/Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.