IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i2p626-641.html
   My bibliography  Save this article

Low-rank matrix estimation via nonconvex spectral regularized methods in errors-in-variables matrix regression

Author

Listed:
  • Li, Xin
  • Wu, Dongya

Abstract

High-dimensional matrix regression has been studied in various aspects, such as statistical properties, computational efficiency and application to specific instances including multivariate regression, system identification and matrix compressed sensing. Current studies mainly consider the idealized case that the covariate matrix is obtained without noise, while the more realistic scenario that the covariates may always be corrupted with noise or missing data has received little attention. We consider the general errors-in-variables matrix regression model and proposed a unified framework for low-rank estimation based on nonconvex spectral regularization. Then from the statistical aspect, recovery bounds for any stationary points are provided to achieve statistical consistency. From the computational aspect, the proximal gradient method is applied to solve the nonconvex optimization problem and is proved to converge to a small neighborhood of the global solution in polynomial time. Consequences for concrete models such as matrix compressed sensing models with additive noise and missing data are obtained via verifying corresponding regularity conditions. Finally, the performance of the proposed nonconvex estimation method is illustrated by numerical experiments on both synthetic and real neuroimaging data.

Suggested Citation

  • Li, Xin & Wu, Dongya, 2025. "Low-rank matrix estimation via nonconvex spectral regularized methods in errors-in-variables matrix regression," European Journal of Operational Research, Elsevier, vol. 323(2), pages 626-641.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:626-641
    DOI: 10.1016/j.ejor.2025.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221725001080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2025.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Belloni & Mathieu Rosenbaum & Alexandre B. Tsybakov, 2017. "Linear and conic programming estimators in high dimensional errors-in-variables models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 939-956, June.
    2. April Sagan & John E. Mitchell, 2021. "Low-rank factorization for rank minimization with nonconvex regularizers," Computational Optimization and Applications, Springer, vol. 79(2), pages 273-300, June.
    3. Li, Mengyan & Li, Runze & Ma, Yanyuan, 2021. "Inference in high dimensional linear measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    4. Hua Zhou & Lexin Li, 2014. "Regularized matrix regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 463-483, March.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Hong, Sung Hoon & Cho, Byung Rae, 2007. "Joint optimization of process target mean and tolerance limits with measurement errors under multi-decision alternatives," European Journal of Operational Research, Elsevier, vol. 183(1), pages 327-335, November.
    7. Xin Li & Dongya Wu, 2024. "Low-rank matrix estimation via nonconvex optimization methods in multi-response errors-in-variables regression," Journal of Global Optimization, Springer, vol. 88(1), pages 79-114, January.
    8. Wu, Jie & Zheng, Zemin & Li, Yang & Zhang, Yi, 2020. "Scalable interpretable learning for multi-response error-in-variables regression," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    9. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    10. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    11. Li, Xin & Wu, Dongya & Li, Chong & Wang, Jinhua & Yao, Jen-Chih, 2020. "Sparse recovery via nonconvex regularized M-estimators over ℓq-balls," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    2. Xiaoshan Li & Da Xu & Hua Zhou & Lexin Li, 2018. "Tucker Tensor Regression and Neuroimaging Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 520-545, December.
    3. Yiting Ma & Pan Shang & Lingchen Kong, 2025. "Tuning parameter selection for the adaptive nuclear norm regularized trace regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(3), pages 491-516, June.
    4. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    7. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    8. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    9. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    10. Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
    11. Soave, David & Lawless, Jerald F., 2023. "Regularized regression for two phase failure time studies," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    12. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    13. Alexander Chudik & George Kapetanios & M. Hashem Pesaran, 2016. "Big Data Analytics: A New Perspective," CESifo Working Paper Series 5824, CESifo.
    14. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    15. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    16. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Post-Print halshs-00917797, HAL.
    17. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    19. Bartosz Uniejewski, 2024. "Regularization for electricity price forecasting," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(3), pages 267-286.
    20. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:626-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.