IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v363y2024ics0306261924004471.html
   My bibliography  Save this article

Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation

Author

Listed:
  • Keddouda, Abdelhak
  • Ihaddadene, Razika
  • Boukhari, Ali
  • Atia, Abdelmalek
  • Arıcı, Müslüm
  • Lebbihiat, Nacer
  • Ihaddadene, Nabila

Abstract

This paper presents data-driven models for photovoltaic module temperature prediction and analyzes the relation and effects of ambient conditions to module temperature. A total of 12 different machine learning and regression algorithms are implemented, with a large experimental dataset of 345,600 × 7. Prior to implementing those algorithms, data preprocessing is performed to prepare the datasets and determine the informative attributes for the models. Using PCA with module temperature as target to predict, the selected features for models' inputs were determined to be ambient temperature, solar radiation, wind speed, and relative humidity, and each algorithm is cross-validated and tuned with optimal performance parameters. Results show that while relative humidity is more likely to introduce less information to the model, other aforementioned features are the important parameters to predict the module temperature. While for linear modeling, LASSO algorithm provided the best performance, the ANN model demonstrated the best overall results as it produced the most accurate predictions with lowest errors. A similar performance is attained by the proposed non-linear model, KRR and Gradient Boosting algorithm, with a slight advantage to the KRR model. Furthermore, in comparison to experimental data, the ANN model and the proposed non-linear model provided an R2 values of 0.986 and 0.981, with a MAE of 0.982 and 1.476, and MSE of 2.181and 3.464, respectively. Moreover, the proposed model supplied accurate results when compared to models from literature in an out-of-sample testing, it also proven to be robust and accurate when used to predict the PV power output.

Suggested Citation

  • Keddouda, Abdelhak & Ihaddadene, Razika & Boukhari, Ali & Atia, Abdelmalek & Arıcı, Müslüm & Lebbihiat, Nacer & Ihaddadene, Nabila, 2024. "Photovoltaic module temperature prediction using various machine learning algorithms: Performance evaluation," Applied Energy, Elsevier, vol. 363(C).
  • Handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004471
    DOI: 10.1016/j.apenergy.2024.123064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924004471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qi & He, Suoying & Song, Tianyi & Wang, Mingwei & Liu, Zhilan & Zhao, Jifang & Gao, Qi & Huang, Xiang & Han, Kuihua & Qi, Jianhui & Gao, Ming & Shi, Yuetao, 2023. "Modeling of a PV system by a back-mounted spray cooling section for performance improvement," Applied Energy, Elsevier, vol. 332(C).
    2. Dong, Xiao-Jian & Shen, Jia-Ni & He, Guo-Xin & Ma, Zi-Feng & He, Yi-Jun, 2021. "A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction," Energy, Elsevier, vol. 234(C).
    3. Bailek, Nadjem & Bouchouicha, Kada & Hassan, Muhammed A. & Slimani, Abdeldjalil & Jamil, Basharat, 2020. "Implicit regression-based correlations to predict the back temperature of PV modules in the arid region of south Algeria," Renewable Energy, Elsevier, vol. 156(C), pages 57-67.
    4. Hove, Tawanda, 2000. "A method for predicting long-term average performance of photovoltaic systems," Renewable Energy, Elsevier, vol. 21(2), pages 207-229.
    5. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    6. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    7. Zhang, Yunpeng & Hao, Peng & Lu, Hao & Ma, Jiao & Yang, Ming, 2022. "Modelling and estimating performance for PV module under varying operating conditions independent of reference condition," Applied Energy, Elsevier, vol. 310(C).
    8. Douak, Fouzi & Melgani, Farid & Benoudjit, Nabil, 2013. "Kernel ridge regression with active learning for wind speed prediction," Applied Energy, Elsevier, vol. 103(C), pages 328-340.
    9. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    12. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    2. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    3. Doruk Cengiz & Arindrajit Dube & Attila S. Lindner & David Zentler-Munro, 2021. "Seeing Beyond the Trees: Using Machine Learning to Estimate the Impact of Minimum Wages on Labor Market Outcomes," NBER Working Papers 28399, National Bureau of Economic Research, Inc.
    4. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    5. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    6. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    7. Thitiphat Klinsuwan & Wachiraphong Ratiphaphongthon & Rabian Wangkeeree & Rattanaporn Wangkeeree & Chatchai Sirisamphanwong, 2023. "Evaluation of Machine Learning Algorithms for Supervised Anomaly Detection and Comparison between Static and Dynamic Thresholds in Photovoltaic Systems," Energies, MDPI, vol. 16(4), pages 1-22, February.
    8. Daan Kolkman & Arjen van Witteloostuijn, 2019. "Data Science in Strategy: Machine learning and text analysis in the study of firm growth," Tinbergen Institute Discussion Papers 19-066/VI, Tinbergen Institute.
    9. Maria-Carmen García-Centeno & Román Mínguez-Salido & Raúl del Pozo-Rubio, 2021. "The Classification of Profiles of Financial Catastrophe Caused by Out-of-Pocket Payments: A Methodological Approach," Mathematics, MDPI, vol. 9(11), pages 1-20, May.
    10. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    11. Garvit Arora & Shubhangi Tiwari & Ying Wu & Xuan Mei, 2024. "An Exploration to the Correlation Structure and Clustering of Macroeconomic Variables," Papers 2401.10162, arXiv.org, revised May 2024.
    12. Konrad Bogner & Florian Pappenberger & Massimiliano Zappa, 2019. "Machine Learning Techniques for Predicting the Energy Consumption/Production and Its Uncertainties Driven by Meteorological Observations and Forecasts," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    13. Huei-Wen Teng & Yu-Hsien Li, 2023. "Can deep neural networks outperform Fama-MacBeth regression and other supervised learning approaches in stock returns prediction with asset-pricing factors?," Digital Finance, Springer, vol. 5(1), pages 149-182, March.
    14. Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    17. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    18. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    19. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    20. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:363:y:2024:i:c:s0306261924004471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.