IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i8p3454-d1633755.html
   My bibliography  Save this article

The Impact of Visual Elements in Street View on Street Quality: A Quantitative Study Based on Deep Learning, Elastic Net Regression, and SHapley Additive exPlanations (SHAP)

Author

Listed:
  • Baoyue Kuang

    (Department of Landscape Architecture, Kyungpook National University, Daegu 41566, Republic of Korea
    These authors contributed equally to this work.)

  • Hao Yang

    (Department of Interior Environmental Design, Pusan National University, Busan 46241, Republic of Korea
    These authors contributed equally to this work.)

  • Taeyeol Jung

    (Department of Landscape Architecture, Kyungpook National University, Daegu 41566, Republic of Korea)

Abstract

Urban street quality directly affects the daily lives of residents and the experiences of tourists, playing a crucial role in the sustainable development of cities. However, most studies either focus on a single demographic or lack interpretable data analysis. To address this, we propose a framework integrating deep learning, elastic net regression, and SHapley Additive exPlanations (SHAPs). Using street view images, we quantitatively assess street quality in Xi’an’s Mingcheng District, considering the perspectives of both residents and tourists. The framework assesses comfort, convenience, safety, and culture to determine street quality and explores influencing factors. The results indicate that high-quality streets are primarily located near major urban roads, tourist attractions, and commercial areas, while older residential areas in historic districts exhibit widespread low-quality streets. Building density significantly and negatively impacts street quality, whereas visibility of the sky and green coverage positively influences street quality. SHAP reveals that greenery can mitigate the negative effects of high building density and enhance street quality. This study provides actionable insights for enhancing urban street quality through data-driven, human-centered approaches, directly contributing to the Sustainable Development Goal 11 (Sustainable Cities and Communities) by promoting more livable, safe, inclusive, and sustainable urban environments.

Suggested Citation

  • Baoyue Kuang & Hao Yang & Taeyeol Jung, 2025. "The Impact of Visual Elements in Street View on Street Quality: A Quantitative Study Based on Deep Learning, Elastic Net Regression, and SHapley Additive exPlanations (SHAP)," Sustainability, MDPI, vol. 17(8), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3454-:d:1633755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/8/3454/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/8/3454/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Auttapone Karndacharuk & Douglas J. Wilson & Roger Dunn, 2014. "A Review of the Evolution of Shared (Street) Space Concepts in Urban Environments," Transport Reviews, Taylor & Francis Journals, vol. 34(2), pages 190-220, March.
    2. Soongbong Lee & Myungjoo Han & Kyoungah Rhee & Bumjoon Bae, 2021. "Identification of Factors Affecting Pedestrian Satisfaction toward Land Use and Street Type," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    3. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    4. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    5. Lingzhu Zhang & Yu Ye & Wenxin Zeng & Alain Chiaradia, 2019. "A Systematic Measurement of Street Quality through Multi-Sourced Urban Data: A Human-Oriented Analysis," IJERPH, MDPI, vol. 16(10), pages 1-24, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank, Research and Statistics Department.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross-border bank claims: The role of foreign-owned banks in emerging countries," Working Papers 2023.06, International Network for Economic Research - INFER.
    10. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    11. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    15. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    16. Jaime Oliver Huidobro & Alberto Antonioni & Francesca Lipari & Ignacio Tamarit, 2022. "Social capital as a network measure provides new insights on economic growth," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-18, August.
    17. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    18. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:8:p:3454-:d:1633755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.