IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58023-x.html
   My bibliography  Save this article

Genetically regulated eRNA expression predicts chromatin contact frequency and reveals genetic mechanisms at GWAS loci

Author

Listed:
  • Michael J. Betti

    (Vanderbilt University Medical Center)

  • Phillip Lin

    (Vanderbilt University Medical Center)

  • Melinda C. Aldrich

    (Vanderbilt University Medical Center)

  • Eric R. Gamazon

    (Vanderbilt University Medical Center
    University of Cambridge)

Abstract

The biological functions of extragenic enhancer RNAs and their impact on disease risk remain relatively underexplored. In this work, we develop in silico models of genetically regulated expression of enhancer RNAs across 49 cell and tissue types, characterizing their degree of genetic control. Leveraging the estimated genetically regulated expression for enhancer RNAs and canonical genes in a large-scale DNA biobank (N > 70,000) and high-resolution Hi-C contact data, we train a deep learning-based model of pairwise three-dimensional chromatin contact frequency for enhancer-enhancer and enhancer-gene pairs in cerebellum and whole blood. Notably, the use of genetically regulated expression of enhancer RNAs provides substantial tissue-specific predictive power, supporting a role for these transcripts in modulating spatial chromatin organization. We identify schizophrenia-associated enhancer RNAs independent of GWAS loci using enhancer RNA-based TWAS and determine the causal effects of these enhancer RNAs using Mendelian randomization. Using enhancer RNA-based TWAS, we generate a comprehensive resource of tissue-specific enhancer associations with complex traits in the UK Biobank. Finally, we show that a substantially greater proportion (63%) of GWAS associations colocalize with causal regulatory variation when enhancer RNAs are included.

Suggested Citation

  • Michael J. Betti & Phillip Lin & Melinda C. Aldrich & Eric R. Gamazon, 2025. "Genetically regulated eRNA expression predicts chromatin contact frequency and reveals genetic mechanisms at GWAS loci," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58023-x
    DOI: 10.1038/s41467-025-58023-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58023-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58023-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Claudia Giambartolomei & Damjan Vukcevic & Eric E Schadt & Lude Franke & Aroon D Hingorani & Chris Wallace & Vincent Plagnol, 2014. "Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics," PLOS Genetics, Public Library of Science, vol. 10(5), pages 1-15, May.
    2. Shilu Zhang & Deborah Chasman & Sara Knaack & Sushmita Roy, 2019. "In silico prediction of high-resolution Hi-C interaction matrices," Nature Communications, Nature, vol. 10(1), pages 1-18, December.
    3. Job Dekker & Andrew S. Belmont & Mitchell Guttman & Victor O. Leshyk & John T. Lis & Stavros Lomvardas & Leonid A. Mirny & Clodagh C. O’Shea & Peter J. Park & Bing Ren & Joan C. Ritland Politz & Jay S, 2017. "Correction: Corrigendum: The 4D nucleome project," Nature, Nature, vol. 552(7684), pages 278-278, December.
    4. Kevin B. Dsouza & Alexandra Maslova & Ediem Al-Jibury & Matthias Merkenschlager & Vijay K. Bhargava & Maxwell W. Libbrecht, 2022. "Learning representations of chromatin contacts using a recurrent neural network identifies genomic drivers of conformation," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Job Dekker & Andrew S. Belmont & Mitchell Guttman & Victor O. Leshyk & John T. Lis & Stavros Lomvardas & Leonid A. Mirny & Clodagh C. O’Shea & Peter J. Park & Bing Ren & Joan C. Ritland Politz & Jay S, 2017. "The 4D nucleome project," Nature, Nature, vol. 549(7671), pages 219-226, September.
    6. Wenbo Li & Dimple Notani & Qi Ma & Bogdan Tanasa & Esperanza Nunez & Aaron Yun Chen & Daria Merkurjev & Jie Zhang & Kenneth Ohgi & Xiaoyuan Song & Soohwan Oh & Hong-Sook Kim & Christopher K. Glass & M, 2013. "Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation," Nature, Nature, vol. 498(7455), pages 516-520, June.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Vassily Trubetskoy & Antonio F. Pardiñas & Ting Qi & Georgia Panagiotaropoulou & Swapnil Awasthi & Tim B. Bigdeli & Julien Bryois & Chia-Yen Chen & Charlotte A. Dennison & Lynsey S. Hall & Max Lam & K, 2022. "Mapping genomic loci implicates genes and synaptic biology in schizophrenia," Nature, Nature, vol. 604(7906), pages 502-508, April.
    9. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zichen Zhang & Ye Eun Bae & Jonathan R. Bradley & Lang Wu & Chong Wu, 2022. "SUMMIT: An integrative approach for better transcriptomic data imputation improves causal gene identification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. repec:plo:pgen00:1005272 is not listed on IDEAS
    3. Hao Wang & Jiaxin Yang & Yu Zhang & Jianliang Qian & Jianrong Wang, 2022. "Reconstruct high-resolution 3D genome structures for diverse cell-types using FLAMINGO," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Heather E Wheeler & Kaanan P Shah & Jonathon Brenner & Tzintzuni Garcia & Keston Aquino-Michaels & GTEx Consortium & Nancy J Cox & Dan L Nicolae & Hae Kyung Im, 2016. "Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues," PLOS Genetics, Public Library of Science, vol. 12(11), pages 1-23, November.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank, Research and Statistics Department.
    7. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    8. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    9. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    10. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    11. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    12. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    13. Sophie Brana & Dalila Chenaf-Nicet & Delphine Lahet, 2023. "Drivers of cross-border bank claims: The role of foreign-owned banks in emerging countries," Working Papers 2023.06, International Network for Economic Research - INFER.
    14. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    15. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    16. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    17. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    18. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
    19. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    20. Jaime Oliver Huidobro & Alberto Antonioni & Francesca Lipari & Ignacio Tamarit, 2022. "Social capital as a network measure provides new insights on economic growth," PLOS ONE, Public Library of Science, vol. 17(8), pages 1-18, August.
    21. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58023-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.