IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n34.html
   My bibliography  Save this article

High-Dimensional Regression and Variable Selection Using CAR Scores

Author

Listed:
  • Zuber Verena
  • Strimmer Korbinian

Abstract

Variable selection is a difficult problem that is particularly challenging in the analysis of high-dimensional genomic data. Here, we introduce the CAR score, a novel and highly effective criterion for variable ranking in linear regression based on Mahalanobis-decorrelation of the explanatory variables. The CAR score provides a canonical ordering that encourages grouping of correlated predictors and down-weights antagonistic variables. It decomposes the proportion of variance explained and it is an intermediate between marginal correlation and the standardized regression coefficient. As a population quantity, any preferred inference scheme can be applied for its estimation. Using simulations, we demonstrate that variable selection by CAR scores is very effective and yields prediction errors and true and false positive rates that compare favorably with modern regression techniques such as elastic net and boosting. We illustrate our approach by analyzing data concerned with diabetes progression and with the effect of aging on gene expression in the human brain. The R package “care” implementing CAR score regression is available from CRAN.

Suggested Citation

  • Zuber Verena & Strimmer Korbinian, 2011. "High-Dimensional Regression and Variable Selection Using CAR Scores," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, July.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:34
    DOI: 10.2202/1544-6115.1730
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1730
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Schäfer Juliane & Strimmer Korbinian, 2005. "A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-32, November.
    2. Tao Lu & Ying Pan & Shyan-Yuan Kao & Cheng Li & Isaac Kohane & Jennifer Chan & Bruce A. Yankner, 2004. "Gene regulation and DNA damage in the ageing human brain," Nature, Nature, vol. 429(6994), pages 883-891, June.
    3. Howard D. Bondell & Brian J. Reich, 2008. "Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR," Biometrics, The International Biometric Society, vol. 64(1), pages 115-123, March.
    4. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    5. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    2. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
    3. Name 1 Dieter Wang Email 1 & Iman (I.P.P.) van Lelyveld & Julia (J.) Schaumburg, 2018. "Do information contagion and business model similarities explain bank credit risk commonalities?," Tinbergen Institute Discussion Papers 18-100/IV, Tinbergen Institute.
    4. Kirchner, Mathias & Schönhart, Martin & Schmid, Erwin, 2016. "Spatial impacts of the CAP post-2013 and climate change scenarios on agricultural intensification and environment in Austria," Ecological Economics, Elsevier, vol. 123(C), pages 35-56.
    5. Vicente Rios, 2017. "What drives unemployment disparities in European regions? A dynamic spatial panel approach," Regional Studies, Taylor & Francis Journals, vol. 51(11), pages 1599-1611, November.
    6. Miriam Hortas-Rico & Vicente Rios, 2022. "Does women´s political empowerment matter for income inequality?," Working Papers. Collection A: Public economics, governance and decentralization 2206, Universidade de Vigo, GEN - Governance and Economics research Network.
    7. Tasadduq Imam & Kevin Tickle & Abdullahi Ahmed & William Guo, 2012. "Linear Relationship Between The Aud/Usd Exchange Rate And The Respective Stock Market Indices: A Computational Finance Perspective," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(1), pages 19-42, January.
    8. Alain Chaney & Martin Hoesli, 2015. "Transaction-Based and Appraisal-Based Capitalization Rate Determinants," International Real Estate Review, Global Social Science Institute, vol. 18(1), pages 1-43.
    9. Andrés J. Picazo-Tadeo & Lisa Gianmoena & Jesús Peiró-Palomino & Vicente Rios, 2024. "Building a Social Progress-Adjusted Indicator of GDP Per Capita for the European Union’s Regions," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 175(2), pages 317-345, November.
    10. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    11. Barreto, Ikaro Daniel de Carvalho & Dore, Luiz Henrique & Stosic, Tatijana & Stosic, Borko D., 2021. "Extending DFA-based multiple linear regression inference: Application to acoustic impedance models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    12. Vicente Rios & Lisa Gianmoena, 2021. "On the link between temperature and regional COVID‐19 severity: Evidence from Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 13(S1), pages 109-137, November.
    13. Michael R. Crager, 2020. "Extensions of the absolute standardized hazard ratio and connections with measures of explained variation and variable importance," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 872-892, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    2. Yue, Lili & Li, Gaorong & Lian, Heng & Wan, Xiang, 2019. "Regression adjustment for treatment effect with multicollinearity in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 17-35.
    3. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    4. Mostafa Rezaei & Ivor Cribben & Michele Samorani, 2021. "A clustering-based feature selection method for automatically generated relational attributes," Annals of Operations Research, Springer, vol. 303(1), pages 233-263, August.
    5. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    6. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    7. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    8. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    11. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    12. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    13. Christidis, Anthony-Alexander & Van Aelst, Stefan & Zamar, Ruben, 2025. "Multi-model subset selection," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    14. Ian W. McKeague & Min Qian, 2015. "An Adaptive Resampling Test for Detecting the Presence of Significant Predictors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1422-1433, December.
    15. Victor Chernozhukov & Christian Hansen & Yuan Liao, 2015. "A lava attack on the recovery of sums of dense and sparse signals," CeMMAP working papers CWP56/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    17. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    18. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    19. Hojin Yang & Hongtu Zhu & Joseph G. Ibrahim, 2018. "MILFM: Multiple index latent factor model based on high‐dimensional features," Biometrics, The International Biometric Society, vol. 74(3), pages 834-844, September.
    20. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.