IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v84y2022i3p973-996.html
   My bibliography  Save this article

Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors

Author

Listed:
  • Niloy Biswas
  • Anirban Bhattacharya
  • Pierre E. Jacob
  • James E. Johndrow

Abstract

We consider Markov chain Monte Carlo (MCMC) algorithms for Bayesian high‐dimensional regression with continuous shrinkage priors. A common challenge with these algorithms is the choice of the number of iterations to perform. This is critical when each iteration is expensive, as is the case when dealing with modern data sets, such as genome‐wide association studies with thousands of rows and up to hundreds of thousands of columns. We develop coupling techniques tailored to the setting of high‐dimensional regression with shrinkage priors, which enable practical, non‐asymptotic diagnostics of convergence without relying on traceplots or long‐run asymptotics. By establishing geometric drift and minorization conditions for the algorithm under consideration, we prove that the proposed couplings have finite expected meeting time. Focusing on a class of shrinkage priors which includes the ‘Horseshoe’, we empirically demonstrate the scalability of the proposed couplings. A highlight of our findings is that less than 1000 iterations can be enough for a Gibbs sampler to reach stationarity in a regression on 100,000 covariates. The numerical results also illustrate the impact of the prior on the computational efficiency of the coupling, and suggest the use of priors where the local precisions are Half‐t distributed with degree of freedom larger than one.

Suggested Citation

  • Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.
  • Handle: RePEc:bla:jorssb:v:84:y:2022:i:3:p:973-996
    DOI: 10.1111/rssb.12495
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12495
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12495?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian Ge & Chia-Yen Chen & Yang Ni & Yen-Chen Anne Feng & Jordan W. Smoller, 2019. "Polygenic prediction via Bayesian regression and continuous shrinkage priors," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Xiaolei Liu & Meng Huang & Bin Fan & Edward S Buckler & Zhiwu Zhang, 2016. "Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 12(2), pages 1-24, February.
    6. Nicholas G. Polson & James G. Scott & Jesse Windle, 2014. "The Bayesian bridge," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(4), pages 713-733, September.
    7. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    8. Anirban Bhattacharya & Debdeep Pati & Natesh S. Pillai & David B. Dunson, 2015. "Dirichlet--Laplace Priors for Optimal Shrinkage," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1479-1490, December.
    9. Xiang Zhou & Peter Carbonetto & Matthew Stephens, 2013. "Polygenic Modeling with Bayesian Sparse Linear Mixed Models," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-14, February.
    10. Ping Zeng & Xiang Zhou, 2017. "Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    11. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    12. Dootika Vats & James M Flegal & Galin L Jones, 2019. "Multivariate output analysis for Markov chain Monte Carlo," Biometrika, Biometrika Trust, vol. 106(2), pages 321-337.
    13. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    14. Pierre E. Jacob & John O’Leary & Yves F. Atchadé, 2020. "Unbiased Markov chain Monte Carlo methods with couplings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 543-600, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Posch, Konstantin & Arbeiter, Maximilian & Pilz, Juergen, 2020. "A novel Bayesian approach for variable selection in linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. van Erp, Sara & Oberski, Daniel L. & Mulder, Joris, 2018. "Shrinkage priors for Bayesian penalized regression," OSF Preprints cg8fq, Center for Open Science.
    3. Kshitij Khare & Malay Ghosh, 2022. "MCMC Convergence for Global-Local Shrinkage Priors," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 211-234, September.
    4. Bai, Ray & Ghosh, Malay, 2018. "High-dimensional multivariate posterior consistency under global–local shrinkage priors," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 157-170.
    5. Banerjee, Sayantan, 2022. "Horseshoe shrinkage methods for Bayesian fusion estimation," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    6. Matthew Gentzkow & Bryan T. Kelly & Matt Taddy, 2017. "Text as Data," NBER Working Papers 23276, National Bureau of Economic Research, Inc.
    7. Shutes, Karl & Adcock, Chris, 2013. "Regularized Extended Skew-Normal Regression," MPRA Paper 58445, University Library of Munich, Germany, revised 09 Sep 2014.
    8. Yu-Zhu Tian & Man-Lai Tang & Wai-Sum Chan & Mao-Zai Tian, 2021. "Bayesian bridge-randomized penalized quantile regression for ordinal longitudinal data, with application to firm’s bond ratings," Computational Statistics, Springer, vol. 36(2), pages 1289-1319, June.
    9. Gilles Charmet & Louis-Gautier Tran & Jérôme Auzanneau & Renaud Rincent & Sophie Bouchet, 2020. "BWGS: A R package for genomic selection and its application to a wheat breeding programme," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-20, April.
    10. Shi, Guiling & Lim, Chae Young & Maiti, Tapabrata, 2019. "Model selection using mass-nonlocal prior," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 36-44.
    11. Scutari Marco & Balding David & Mackay Ian, 2013. "Improving the efficiency of genomic selection," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(4), pages 517-527, August.
    12. Tanin Sirimongkolkasem & Reza Drikvandi, 2019. "On Regularisation Methods for Analysis of High Dimensional Data," Annals of Data Science, Springer, vol. 6(4), pages 737-763, December.
    13. Tian, Yuzhu & Song, Xinyuan, 2020. "Bayesian bridge-randomized penalized quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    14. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    15. Junyang Qian & Yosuke Tanigawa & Wenfei Du & Matthew Aguirre & Chris Chang & Robert Tibshirani & Manuel A Rivas & Trevor Hastie, 2020. "A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank," PLOS Genetics, Public Library of Science, vol. 16(10), pages 1-30, October.
    16. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    17. Shutes, Karl & Adcock, Chris, 2013. "Regularized Skew-Normal Regression," MPRA Paper 52217, University Library of Munich, Germany, revised 11 Dec 2013.
    18. Cox Lwaka Tamba & Yuan-Li Ni & Yuan-Ming Zhang, 2017. "Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-20, January.
    19. Heather E Wheeler & Kaanan P Shah & Jonathon Brenner & Tzintzuni Garcia & Keston Aquino-Michaels & GTEx Consortium & Nancy J Cox & Dan L Nicolae & Hae Kyung Im, 2016. "Survey of the Heritability and Sparse Architecture of Gene Expression Traits across Human Tissues," PLOS Genetics, Public Library of Science, vol. 12(11), pages 1-23, November.
    20. Anindya Bhadra & Jyotishka Datta & Nicholas G. Polson & Brandon T. Willard, 2021. "The Horseshoe-Like Regularization for Feature Subset Selection," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 185-214, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:84:y:2022:i:3:p:973-996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.