Author
Listed:
- Aaron Green
- Zihan Nie
- Hanzhen Qin
- Oshani Seneviratne
- Kristin P. Bennett
Abstract
Survival modeling predicts the time until an event occurs and is widely used in risk analysis; for example, it's used in medicine to predict the survival of a patient based on censored data. There is a need for large-scale, realistic, and freely available datasets for benchmarking artificial intelligence (AI) survival models. In this paper, we derive a suite of 16 survival modeling tasks from publicly available transaction data generated by lending of cryptocurrencies in Decentralized Finance (DeFi). Each task was constructed using an automated pipeline based on choices of index and outcome events. For example, the model predicts the time from when a user borrows cryptocurrency coins (index event) until their first repayment (outcome event). We formulate a survival benchmark consisting of a suite of 16 survival-time prediction tasks (FinSurvival). We also automatically create 16 corresponding classification problems for each task by thresholding the survival time using the restricted mean survival time. With over 7.5 million records, FinSurvival provides a suite of realistic financial modeling tasks that will spur future AI survival modeling research. Our evaluation indicated that these are challenging tasks that are not well addressed by existing methods. FinSurvival enables the evaluation of AI survival models applicable to traditional finance, industry, medicine, and commerce, which is currently hindered by the lack of large public datasets. Our benchmark demonstrates how AI models could assess opportunities and risks in DeFi. In the future, the FinSurvival benchmark pipeline can be used to create new benchmarks by incorporating more DeFi transactions and protocols as the use of cryptocurrency grows.
Suggested Citation
Aaron Green & Zihan Nie & Hanzhen Qin & Oshani Seneviratne & Kristin P. Bennett, 2025.
"FinSurvival: A Suite of Large Scale Survival Modeling Tasks from Finance,"
Papers
2507.14160, arXiv.org.
Handle:
RePEc:arx:papers:2507.14160
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.14160. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.