IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v35y2016i8-10p1377-1411.html
   My bibliography  Save this article

Oracle Inequalities for Convex Loss Functions with Nonlinear Targets

Author

Listed:
  • Mehmet Caner
  • Anders Bredahl Kock

Abstract

This article considers penalized empirical loss minimization of convex loss functions with unknown target functions. Using the elastic net penalty, of which the Least Absolute Shrinkage and Selection Operator (Lasso) is a special case, we establish a finite sample oracle inequality which bounds the loss of our estimator from above with high probability. If the unknown target is linear, this inequality also provides an upper bound of the estimation error of the estimated parameter vector. Next, we use the non-asymptotic results to show that the excess loss of our estimator is asymptotically of the same order as that of the oracle. If the target is linear, we give sufficient conditions for consistency of the estimated parameter vector. We briefly discuss how a thresholded version of our estimator can be used to perform consistent variable selection. We give two examples of loss functions covered by our framework.

Suggested Citation

  • Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
  • Handle: RePEc:taf:emetrv:v:35:y:2016:i:8-10:p:1377-1411
    DOI: 10.1080/07474938.2015.1092797
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2015.1092797
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Xu Cheng & Zhipeng Liao, 2011. "Select the Valid and Relevant Moments: An Information-Based LASSO for GMM with Many Moments, Second Version," PIER Working Paper Archive 13-062, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 21 Oct 2013.
    3. Kock, Anders Bredahl, 2013. "Oracle Efficient Variable Selection In Random And Fixed Effects Panel Data Models," Econometric Theory, Cambridge University Press, vol. 29(01), pages 115-152, February.
    4. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    5. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    6. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    7. Malene Kallestrup-Lamb & Anders Bredahl Kock & Johannes Tang Kristensen, 2016. "Lassoing the Determinants of Retirement," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1522-1561, December.
    8. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    9. Kock, Anders Bredahl & Callot, Laurent, 2015. "Oracle inequalities for high dimensional vector autoregressions," Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
    10. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76 Elsevier.
    11. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    12. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911.
    13. Yingying Fan & Cheng Yong Tang, 2013. "Tuning parameter selection in high dimensional penalized likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(3), pages 531-552, June.
    14. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768.
    15. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:35:y:2016:i:8-10:p:1377-1411. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.