IDEAS home Printed from https://ideas.repec.org/p/pen/papers/13-062.html
   My bibliography  Save this paper

Select the Valid and Relevant Moments: An Information-Based LASSO for GMM with Many Moments, Second Version

Author

Listed:
  • Xu Cheng

    (Department of Economics, University of Pennsylvania)

  • Zhipeng Liao

    (Department of Economics, University of California, Los Angeles)

Abstract

This paper studies the selection of valid and relevant moments for the generalized method of moments (GMM) estimation. For applications with many candidate moments, our asymptotic analysis accommodates a diverging number of moments as the sample size increases. The proposed procedure achieves three objectives in one-step: (i) the valid and relevant moments are distinguished from the invalid or irrelevant ones; (ii) all desired moments are selected in one step instead of in a stepwise manner; (iii) the parameters of interest are automatically estimated with all selected moments as opposed to a post-selection estimation. The new method performs moment selection and efficient estimation simultaneously via an information-based adaptive GMM shrinkage estimation, where an appropriate penalty is attached to the standard GMM criterion to link moment selection to shrinkage estimation. The penalty is designed to signal both moment validity and relevance for consistent moment selection. We develop asymptotic results for the high-dimensional GMM shrinkage estimator, allowing for non-smooth sample moments and weakly dependent observations. For practical implementation, this one-step procedure is computationally attractive.

Suggested Citation

  • Xu Cheng & Zhipeng Liao, 2011. "Select the Valid and Relevant Moments: An Information-Based LASSO for GMM with Many Moments, Second Version," PIER Working Paper Archive 13-062, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 21 Oct 2013.
  • Handle: RePEc:pen:papers:13-062
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/13-062.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. DiTraglia, Francis J., 2016. "Using invalid instruments on purpose: Focused moment selection and averaging for GMM," Journal of Econometrics, Elsevier, vol. 195(2), pages 187-208.
    2. He, Yinghua, 2012. "Gaming the Boston School Choice Mechanism in Beijing," TSE Working Papers 12-345, Toulouse School of Economics (TSE).
    3. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    4. Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
    5. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    6. Francis J. DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 14-045, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 09 Dec 2014.
    7. Francis DiTraglia, 2011. "Using Invalid Instruments on Purpose: Focused Moment Selection and Averaging for GMM, Second Version," PIER Working Paper Archive 15-027, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 10 Aug 2015.
    8. P.A.V.B. Swamy & George S. Tavlas & Stephen G. Hall, 2015. "On the Interpretation of Instrumental Variables in the Presence of Specification Errors," Econometrics, MDPI, vol. 3(1), pages 1-10, January.
    9. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Canova & Christian Matthes, 2021. "Dealing with misspecification in structural macroeconometric models," Quantitative Economics, Econometric Society, vol. 12(2), pages 313-350, May.
    2. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    3. Shantanu Gupta & Zachary C. Lipton & David Childers, 2021. "Efficient Online Estimation of Causal Effects by Deciding What to Observe," Papers 2108.09265, arXiv.org, revised Oct 2021.
    4. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Ning Xu & Jian Hong & Timothy C. G. Fisher, 2016. "Model selection consistency from the perspective of generalization ability and VC theory with an application to Lasso," Papers 1606.00142, arXiv.org.
    6. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    7. Firpo, Sergio & Galvao, Antonio F. & Pinto, Cristine & Poirier, Alexandre & Sanroman, Graciela, 2022. "GMM quantile regression," Journal of Econometrics, Elsevier, vol. 230(2), pages 432-452.
    8. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2019. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1339-1350, July.
    9. Qingliang Fan & Yaqian Wu, 2020. "Endogenous Treatment Effect Estimation with some Invalid and Irrelevant Instruments," Papers 2006.14998, arXiv.org.
    10. P. Čížek & M. Aquaro, 2018. "Robust estimation and moment selection in dynamic fixed-effects panel data models," Computational Statistics, Springer, vol. 33(2), pages 675-708, June.
    11. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    12. Tomohiro Ando & Naoya Sueishi, 2019. "On the Convergence Rate of the SCAD-Penalized Empirical Likelihood Estimator," Econometrics, MDPI, vol. 7(1), pages 1-14, March.
    13. Jonathan Chassot & Michael Creel, 2023. "Constructing Efficient Simulated Moments Using Temporal Convolutional Networks," Working Papers 1412, Barcelona School of Economics.
    14. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    15. Bai Huang & Tae-Hwy Lee & Aman Ullah, 2017. "A combined estimator of regression models with measurement errors," Indian Economic Review, Springer, vol. 52(1), pages 73-91, December.
    16. P.A.V.B. Swamy & George S. Tavlas & Stephen G. Hall, 2015. "On the Interpretation of Instrumental Variables in the Presence of Specification Errors," Econometrics, MDPI, vol. 3(1), pages 1-10, January.
    17. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    18. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    19. Ruoyao Shi & Zhipeng Liao, 2018. "An Averaging GMM Estimator Robust to Misspecification," Working Papers 201803, University of California at Riverside, Department of Economics.
    20. Hao Hao & Bai Huang & Tae-hwy Lee, 2024. "Model averaging estimation of panel data models with many instruments and boosting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 51(1), pages 53-69, January.

    More about this item

    Keywords

    Adaptive Penalty; GMM; Many Moments; Moment Selection; Oracle Properties; Shrinkage Estimation;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:13-062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.