IDEAS home Printed from https://ideas.repec.org/p/adl/wpaper/2019-04.html
   My bibliography  Save this paper

Relevant moment selection under mixed identification strength

Author

Listed:
  • Prosper Dovonon

    () (Economics Department, Concordia University)

  • Firmin Doko Tchatoka

    () (School of Economics, University of Adelaide)

  • Michael Aguessy

    () (Economics Department, Concordia University)

Abstract

This paper proposes a moment selection method in the presence of moment condition models with mixed identification strength. That is moment conditions including moment functions that are local to zero uniformly over the parameter set. We show that the relevant moment selection procedure of Hall et al. (2007) is inconsistent in this setting as it does not explicitly account for the rate of convergence of parameter estimation of the candidate models which may vary. We introduce a new moment selection procedure based on a criterion that sequentially evaluates the rate of convergence of the candidate model's parameter estimate and the entropy of the estimator's asymptotic distribution. The benchmark estimator that we consider is the two-step efficient generalized method of moments (GMM) estimator which is known to be efficient in this framework as well. A family of penalization functions is introduced that guarantees the consistency of the selection procedure. The finite sample performance of the proposed method is assessed through Monte Carlo simulations.

Suggested Citation

  • Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics Working Papers 2019-04, University of Adelaide, School of Economics.
  • Handle: RePEc:adl:wpaper:2019-04
    as

    Download full text from publisher

    File URL: https://media.adelaide.edu.au/economics/papers/doc/wp2019-04.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. repec:wly:quante:v:9:y:2018:i:3:p:1265-1297 is not listed on IDEAS
    2. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Antoine, Bertille & Renault, Eric, 2012. "Efficient minimum distance estimation with multiple rates of convergence," Journal of Econometrics, Elsevier, vol. 170(2), pages 350-367.
    5. repec:eee:econom:v:205:y:2018:i:1:p:76-111 is not listed on IDEAS
    6. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-1191, September.
    7. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    8. Alastair R. Hall & Fernanda P. M. Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287, January.
    9. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    10. Blomquist, Soren & Dahlberg, Matz, 1999. "Small Sample Properties of LIML and Jackknife IV Estimators: Experiments with Weak Instruments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(1), pages 69-88, Jan.-Feb..
    11. repec:cup:etheor:v:34:y:2018:i:04:p:790-814_00 is not listed on IDEAS
    12. Atsushi Inoue & Mototsugu Shintani, 2018. "Quasi‐Bayesian model selection," Quantitative Economics, Econometric Society, vol. 9(3), pages 1265-1297, November.
    13. Bertille Antoine & Eric Renault, 2009. "Efficient GMM with nearly-weak instruments," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 135-171, January.
    14. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    15. Frank Windmeijer & Helmut Farbmacher & Neil Davies & George Davey Smith, 2016. "On the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instruments," Bristol Economics Discussion Papers 16/674, Department of Economics, University of Bristol, UK, revised 08 Aug 2017.
    16. Cheng, Xu & Liao, Zhipeng, 2015. "Select the valid and relevant moments: An information-based LASSO for GMM with many moments," Journal of Econometrics, Elsevier, vol. 186(2), pages 443-464.
    17. Donald W. K. Andrews, 1999. "Consistent Moment Selection Procedures for Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 67(3), pages 543-564, May.
    18. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    19. Prosper Dovonon & Alastair Hall, 2018. "The Asymptotic Properties of GMM and Indirect Inference under Second-order Identification," CIRANO Working Papers 2018s-37, CIRANO.
    20. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    21. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    22. repec:eee:econom:v:207:y:2018:i:1:p:188-211 is not listed on IDEAS
    23. Caner, Mehmet & Fan, Qingliang, 2015. "Hybrid generalized empirical likelihood estimators: Instrument selection with adaptive lasso," Journal of Econometrics, Elsevier, vol. 187(1), pages 256-274.
    24. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
    25. Hall, Alastair R. & Inoue, Atsushi & Jana, Kalidas & Shin, Changmock, 2007. "Information in generalized method of moments estimation and entropy-based moment selection," Journal of Econometrics, Elsevier, vol. 138(2), pages 488-512, June.
    26. Prosper Dovonon & Eric Renault, 2013. "Testing for Common Conditionally Heteroskedastic Factors," Econometrica, Econometric Society, vol. 81(6), pages 2561-2586, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adl:wpaper:2019-04. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nicolas Groshenny). General contact details of provider: http://edirc.repec.org/data/decadau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.