Lassoing the Determinants of Retirement
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Malene Kallestrup-Lamb & Anders Bredahl Kock & Johannes Tang Kristensen, 2016. "Lassoing the Determinants of Retirement," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1522-1561, December.
References listed on IDEAS
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Ebbinghaus, Bernhard, 2008. "Reforming Early Retirement in Europe, Japan and the USA," OUP Catalogue, Oxford University Press, number 9780199553396.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Bent Jesper Christensen & Malene Kallestrup‐Lamb, 2012.
"The Impact Of Health Changes On Labor Supply: Evidence From Merged Data On Individual Objective Medical Diagnosis Codes And Early Retirement Behavior,"
Health Economics, John Wiley & Sons, Ltd., vol. 21(S1), pages 56-100, June.
- Bruce Hollingsworth & Anthony Scott & Bent Jesper Christensen & Malene Kallestrup‐Lamb, 2012. "The Impact Of Health Changes On Labor Supply: Evidence From Merged Data On Individual Objective Medical Diagnosis Codes And Early Retirement Behavior," Health Economics, John Wiley & Sons, Ltd., vol. 21, pages 56-100, June.
- Bent Jesper Christensen & Malene Kallestrup Lamb, 2010. "The Impact of Health Changes on Labor Supply: Evidence from Merged Data on Individual Objective Medical Diagnosis Codes and Early Retirement Behavior," CREATES Research Papers 2010-62, Department of Economics and Business Economics, Aarhus University.
- Heij, Christiaan & de Boer, Paul & Franses, Philip Hans & Kloek, Teun & van Dijk, Herman K., 2004. "Econometric Methods with Applications in Business and Economics," OUP Catalogue, Oxford University Press, number 9780199268016.
- Alexandre Belloni & Victor Chernozhukov, 2011. "High Dimensional Sparse Econometric Models: An Introduction," Papers 1106.5242, arXiv.org, revised Sep 2011.
- Hugo Benítez-Silva & Moshe Buchinsky & Hiu Man Chan & Sofia Cheidvasser & John Rust, 2004.
"How large is the bias in self-reported disability?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(6), pages 649-670.
- Hugo Benitez-Silva & Moshe Buchinsky & Hiu Man Chan & Sofia Cheidvasser & John Rust, 2000. "How Large is the Bias in Self-Reported Disability?," Working Papers 2000-01, Brown University, Department of Economics.
- Hugo Benitez-Silva & Moshe Buchinsky & Hiu Man Chan & Sofia Cheidvasser & John Rust, 2000. "How Large is the Bias is Self-Reported Disability?," NBER Working Papers 7526, National Bureau of Economic Research, Inc.
- Michael Baker & Mark Stabile & Catherine Deri, 2004.
"What Do Self-Reported, Objective, Measures of Health Measure?,"
Journal of Human Resources, University of Wisconsin Press, vol. 39(4).
- Michael Baker & Mark Stabile & Catherine Deri, 2001. "What do Self-Reported, Objective, Measures of Health Measure?," NBER Working Papers 8419, National Bureau of Economic Research, Inc.
- Arjan Heyma, 2004. "A structural dynamic analysis of retirement behaviour in the Netherlands," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(6), pages 739-759.
- Sveinbjörn Blöndal & Stefano Scarpetta, 1999. "The Retirement Decision in OECD Countries," OECD Economics Department Working Papers 202, OECD Publishing.
- Leeb, Hannes & Potscher, Benedikt M., 2008.
"Sparse estimators and the oracle property, or the return of Hodges' estimator,"
Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
- Hannes Leeb & Benedikt M. Poetscher, 2005. "Sparse Estimators and the Oracle Property, or the Return of Hodges' Estimator," Cowles Foundation Discussion Papers 1500, Cowles Foundation for Research in Economics, Yale University, revised Apr 2007.
- Pablo Antolín & Stefano Scarpetta, 1998. "Microeconometric Analysis of the Retirement Decision: Germany," OECD Economics Department Working Papers 204, OECD Publishing.
- Mark Y. An & Bent Jesper Christensen & Nabanita Datta Gupta, 2004. "Multivariate mixed proportional hazard modelling of the joint retirement of married couples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(6), pages 687-704.
- Nabanita Datta Gupta & Mona Larsen, 2010. "The impact of health on individual retirement plans: self‐reported versus diagnostic measures," Health Economics, John Wiley & Sons, Ltd., vol. 19(7), pages 792-813, July.
- Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mehmet Caner & Anders Bredahl Kock, 2016.
"Oracle Inequalities for Convex Loss Functions with Nonlinear Targets,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
- Mehmet Caner & Anders Bredahl Kock, 2013. "Oracle Inequalities for Convex Loss Functions with Non-Linear Targets," CREATES Research Papers 2013-51, Department of Economics and Business Economics, Aarhus University.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Craig, Sarah J.C. & Kenney, Ana M. & Lin, Junli & Paul, Ian M. & Birch, Leann L. & Savage, Jennifer S. & Marini, Michele E. & Chiaromonte, Francesca & Reimherr, Matthew L. & Makova, Kateryna D., 2023. "Constructing a polygenic risk score for childhood obesity using functional data analysis," Econometrics and Statistics, Elsevier, vol. 25(C), pages 66-86.
- Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2020. "Model-free variable selection for conditional mean in regression," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
- Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
- Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, Department of Economics and Business Economics, Aarhus University.
- Loann David Denis Desboulets, 2018.
"A Review on Variable Selection in Regression Analysis,"
Econometrics, MDPI, vol. 6(4), pages 1-27, November.
- Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Post-Print hal-01954386, HAL.
- Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
- Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
- Medeiros, Marcelo C. & Mendes, Eduardo F., 2016. "ℓ1-regularization of high-dimensional time-series models with non-Gaussian and heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 191(1), pages 255-271.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Zakariya Yahya Algamal & Muhammad Hisyam Lee, 2019. "A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 753-771, September.
- Bent Jesper Christensen & Malene Kallestrup‐Lamb, 2012.
"The Impact Of Health Changes On Labor Supply: Evidence From Merged Data On Individual Objective Medical Diagnosis Codes And Early Retirement Behavior,"
Health Economics, John Wiley & Sons, Ltd., vol. 21(S1), pages 56-100, June.
- Bent Jesper Christensen & Malene Kallestrup Lamb, 2010. "The Impact of Health Changes on Labor Supply: Evidence from Merged Data on Individual Objective Medical Diagnosis Codes and Early Retirement Behavior," CREATES Research Papers 2010-62, Department of Economics and Business Economics, Aarhus University.
- Zhihua Sun & Yi Liu & Kani Chen & Gang Li, 2022. "Broken adaptive ridge regression for right-censored survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(1), pages 69-91, February.
- Kock, Anders Bredahl & Callot, Laurent, 2015.
"Oracle inequalities for high dimensional vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 325-344.
- Anders Bredahl Kock & Laurent A.F. Callot, 2012. "Oracle Inequalities for High Dimensional Vector Autoregressions," CREATES Research Papers 2012-16, Department of Economics and Business Economics, Aarhus University.
- Caner, Mehmet & Kock, Anders Bredahl, 2018.
"Asymptotically honest confidence regions for high dimensional parameters by the desparsified conservative Lasso,"
Journal of Econometrics, Elsevier, vol. 203(1), pages 143-168.
- Mehmet Caner & Anders Bredahl Kock, 2014. "Asymptotically Honest Confidence Regions for High Dimensional Parameters by the Desparsified Conservative Lasso," CREATES Research Papers 2014-36, Department of Economics and Business Economics, Aarhus University.
- Dai, Linlin & Chen, Kani & Sun, Zhihua & Liu, Zhenqiu & Li, Gang, 2018. "Broken adaptive ridge regression and its asymptotic properties," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 334-351.
- Malene Kallestrup-Lamb, 2011. "The Role of the Spouse in Early Retirement Decisions for Older Workers," CREATES Research Papers 2011-38, Department of Economics and Business Economics, Aarhus University.
- N. Neykov & P. Filzmoser & P. Neytchev, 2014. "Ultrahigh dimensional variable selection through the penalized maximum trimmed likelihood estimator," Statistical Papers, Springer, vol. 55(1), pages 187-207, February.
- De La Maza, Cristóbal & Davis, Alex & Azevedo, Inês, 2021. "Welfare analysis of the ecological impacts of electricity production in Chile using the sparse multinomial logit model," Ecological Economics, Elsevier, vol. 184(C).
- Guo, Yi & Berman, Mark & Gao, Junbin, 2014. "Group subset selection for linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 39-52.
- Mehmet Caner & Anders Bredahl Kock, 2016.
"Oracle Inequalities for Convex Loss Functions with Nonlinear Targets,"
Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
- Mehmet Caner & Anders Bredahl Kock, 2013. "Oracle Inequalities for Convex Loss Functions with Non-Linear Targets," CREATES Research Papers 2013-51, Department of Economics and Business Economics, Aarhus University.
More about this item
Keywords
Retirement; Register data; High-dimensional data; Lasso; Adaptive Lasso; Oracle property; Logistic regression;All these keywords.
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
- J0 - Labor and Demographic Economics - - General
- J14 - Labor and Demographic Economics - - Demographic Economics - - - Economics of the Elderly; Economics of the Handicapped; Non-Labor Market Discrimination
- J62 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Job, Occupational and Intergenerational Mobility; Promotion
NEP fields
This paper has been announced in the following NEP Reports:- NEP-AGE-2013-07-05 (Economics of Ageing)
- NEP-DEM-2013-07-05 (Demographic Economics)
- NEP-EUR-2013-07-05 (Microeconomic European Issues)
- NEP-LAB-2013-07-05 (Labour Economics)
- NEP-LMA-2013-07-05 (Labor Markets - Supply, Demand, and Wages)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2013-21. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.au.dk/afn/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.