IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0304214.html
   My bibliography  Save this article

Analysis of multi-level barriers to physical activity among nursing students using regularized regression

Author

Listed:
  • Muge Capan
  • Lily Bigelow
  • Yukti Kathuria
  • Amanda Paluch
  • Joohyun Chung

Abstract

Physical inactivity is a growing societal concern with significant impact on public health. Identifying barriers to engaging in physical activity (PA) is a critical step to recognize populations who disproportionately experience these barriers. Understanding barriers to PA holds significant importance within patient-facing healthcare professions like nursing. While determinants of PA have been widely studied, connecting individual and social factors to barriers to PA remains an understudied area among nurses. The objectives of this study are to categorize and model factors related to barriers to PA using the National Institute on Minority Health and Health Disparities (NIMHD) Research Framework. The study population includes nursing students at the study institution (N = 163). Methods include a scoring system to quantify the barriers to PA, and regularized regression models that predict this score. Key findings identify intrinsic motivation, social and emotional support, education, and the use of health technologies for tracking and decision-making purposes as significant predictors. Results can help identify future nursing workforce populations at risk of experiencing barriers to PA. Encouraging the development and employment of health-informatics solutions for monitoring, data sharing, and communication is critical to prevent barriers to PA before they become a powerful hindrance to engaging in PA.

Suggested Citation

  • Muge Capan & Lily Bigelow & Yukti Kathuria & Amanda Paluch & Joohyun Chung, 2024. "Analysis of multi-level barriers to physical activity among nursing students using regularized regression," PLOS ONE, Public Library of Science, vol. 19(5), pages 1-18, May.
  • Handle: RePEc:plo:pone00:0304214
    DOI: 10.1371/journal.pone.0304214
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0304214
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0304214&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0304214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    2. Natalia Stanulewicz & Emily Knox & Melanie Narayanasamy & Noureen Shivji & Kamlesh Khunti & Holly Blake, 2019. "Effectiveness of Lifestyle Health Promotion Interventions for Nurses: A Systematic Review," IJERPH, MDPI, vol. 17(1), pages 1-36, December.
    3. Tanya L. Thwaite & Penny Heidke & Susan L. Williams & Corneel Vandelanotte & Amanda L. Rebar & Saman Khalesi, 2020. "Barriers to healthy lifestyle behaviors in Australian nursing students: A qualitative study," Nursing & Health Sciences, John Wiley & Sons, vol. 22(4), pages 921-928, December.
    4. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    5. Zachary C. Pope & Daheia J. Barr-Anderson & Beth A. Lewis & Mark A. Pereira & Zan Gao, 2019. "Use of Wearable Technology and Social Media to Improve Physical Activity and Dietary Behaviors among College Students: A 12-Week Randomized Pilot Study," IJERPH, MDPI, vol. 16(19), pages 1-21, September.
    6. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Štefan Lyócsa & Petra Vašaničová & Branka Hadji Misheva & Marko Dávid Vateha, 2022. "Default or profit scoring credit systems? Evidence from European and US peer-to-peer lending markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    2. repec:plo:pone00:0185380 is not listed on IDEAS
    3. Zander S. Venter & Adam Sadilek & Charlotte Stanton & David N. Barton & Kristin Aunan & Sourangsu Chowdhury & Aaron Schneider & Stefano Maria Iacus, 2021. "Mobility in Blue-Green Spaces Does Not Predict COVID-19 Transmission: A Global Analysis," IJERPH, MDPI, vol. 18(23), pages 1-12, November.
    4. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    5. Paweł Teisseyre & Robert A. Kłopotek & Jan Mielniczuk, 2016. "Random Subspace Method for high-dimensional regression with the R package regRSM," Computational Statistics, Springer, vol. 31(3), pages 943-972, September.
    6. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    7. Merlijn Breugel & Cancan Qi & Zhongli Xu & Casper-Emil T. Pedersen & Ilya Petoukhov & Judith M. Vonk & Ulrike Gehring & Marijn Berg & Marnix Bügel & Orestes A. Carpaij & Erick Forno & Andréanne Morin , 2022. "Nasal DNA methylation at three CpG sites predicts childhood allergic disease," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Ramírez-Aguilar, Edwin Alejandro & Sailor, David J. & Wentz, Elizabeth A., 2024. "Household, sociodemographic, building and land cover factors affecting residential summer electricity consumption: A systematic statistical study in Phoenix, AZ," Energy, Elsevier, vol. 313(C).
    9. Mielniczuk, Jan & Teisseyre, Paweł, 2014. "Using random subspace method for prediction and variable importance assessment in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 725-742.
    10. Anurag Satpathi & Parul Setiya & Bappa Das & Ajeet Singh Nain & Prakash Kumar Jha & Surendra Singh & Shikha Singh, 2023. "Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
    11. Vera Wendler-Bosco & Charles Nicholson, 2022. "Modeling the economic impact of incoming tropical cyclones using machine learning," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 487-518, January.
    12. A. Jiran Meitei & Akanksha Saini & Bibhuti Bhusan Mohapatra & Kh. Jitenkumar Singh, 2022. "Predicting child anaemia in the North-Eastern states of India: a machine learning approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2949-2962, December.
    13. repec:plo:pone00:0196038 is not listed on IDEAS
    14. Schroeders, Ulrich & Watrin, Luc & Wilhelm, Oliver, 2021. "Age-related nuances in knowledge assessment," Intelligence, Elsevier, vol. 85(C).
    15. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    16. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank, Research and Statistics Department.
    17. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    18. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    19. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    20. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    21. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    22. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0304214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.