IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i6p931-d368403.html
   My bibliography  Save this article

Detection of Near-Nulticollinearity through Centered and Noncentered Regression

Author

Listed:
  • Román Salmerón Gómez

    (Department of Quantitative Methods for Economics and Business, University of Granada, 18010 Granada, Spain)

  • Catalina García García

    (Department of Quantitative Methods for Economics and Business, University of Granada, 18010 Granada, Spain)

  • José García Pérez

    (Department of Economy and Company, University of Almería, 04120 Almería, Spain)

Abstract

This paper analyzes the diagnostic of near-multicollinearity in a multiple linear regression from auxiliary centered (with intercept) and noncentered (without intercept) regressions. From these auxiliary regressions, the centered and noncentered variance inflation factors (VIFs) are calculated. An expression is also presented that relates both of them. In addition, this paper analyzes why the VIF is not able to detect the relation between the intercept and the rest of the independent variables of an econometric model. At the same time, an analysis is also provided to determine how the auxiliary regression applied to calculate the VIF can be useful to detect this kind of multicollinearity.

Suggested Citation

  • Román Salmerón Gómez & Catalina García García & José García Pérez, 2020. "Detection of Near-Nulticollinearity through Centered and Noncentered Regression," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:931-:d:368403
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/6/931/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/6/931/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David A. Belsley, 1988. "A Guide to Using the Collinearity Diagnostics," Boston College Working Papers in Economics 190, Boston College Department of Economics.
    2. Catalina Garcia & José Pérez & José Liria, 2011. "The raise method. An alternative procedure to estimate the parameters in presence of collinearity," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(2), pages 403-423, February.
    3. Aris Spanos, 2019. "Near-collinearity in linear regression revisited: The numerical vs. the statistical perspective," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(22), pages 5492-5516, November.
    4. Chennamaneni, Pavan Rao & Echambadi, Raj & Hess, James D. & Syam, Niladri, 2016. "Diagnosing harmful collinearity in moderated regressions: A roadmap," International Journal of Research in Marketing, Elsevier, vol. 33(1), pages 172-182.
    5. Santiago Velilla, 2018. "A Note on Collinearity Diagnostics and Centering," The American Statistician, Taylor & Francis Journals, vol. 72(2), pages 140-146, April.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Román Salmerón Gómez & Ainara Rodríguez Sánchez & Catalina García García & José García Pérez, 2020. "The VIF and MSE in Raise Regression," Mathematics, MDPI, vol. 8(4), pages 1-28, April.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    4. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    5. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    6. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    7. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    8. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    9. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    10. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    11. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    14. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    15. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    16. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    17. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    18. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    19. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    20. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:6:p:931-:d:368403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.