IDEAS home Printed from https://ideas.repec.org/p/aah/create/2016-32.html
   My bibliography  Save this paper

A New Index of Housing Sentiment

Author

Listed:
  • Lasse Bork

    () (Aalborg University)

  • Stig V. Møller

    () (Aarhus University and CREATES)

  • Thomas Q. Pedersen

    () (Aarhus University and CREATES)

Abstract

We propose a new measure for housing sentiment and show that it accurately tracks expectations about future house price growth rates. We construct the housing sentiment index using partial least squares on household survey responses to questions about buying conditions for houses. We ?find that housing sentiment explains a large share of the time-variation in house prices during both boom and bust cycles and it strongly outperforms several macroeconomic variables typically used to forecast house prices.

Suggested Citation

  • Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2016. "A New Index of Housing Sentiment," CREATES Research Papers 2016-32, Department of Economics and Business Economics, Aarhus University.
  • Handle: RePEc:aah:create:2016-32
    as

    Download full text from publisher

    File URL: ftp://ftp.econ.au.dk/creates/rp/16/rp16_32.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Luis Armona & Andreas Fuster & Basit Zafar, 2019. "Home Price Expectations and Behaviour: Evidence from a Randomized Information Experiment," Review of Economic Studies, Oxford University Press, vol. 86(4), pages 1371-1410.
    2. Cindy K Soo, 2018. "Quantifying Sentiment with News Media across Local Housing Markets," Review of Financial Studies, Society for Financial Studies, vol. 31(10), pages 3689-3719.
    3. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    4. Sydney C. Ludvigson, 2004. "Consumer Confidence and Consumer Spending," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 29-50, Spring.
    5. Malcolm Baker & Jeffrey Wurgler, 2006. "Investor Sentiment and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1645-1680, August.
    6. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    7. Markus K. Brunnermeier & Christian Julliard, 2008. "Money Illusion and Housing Frenzies," Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 135-180, January.
    8. Bauer, Gregory H., 2017. "International house price cycles, monetary policy and credit," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 88-114.
    9. Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
    10. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    11. Carroll, Christopher D & Fuhrer, Jeffrey C & Wilcox, David W, 1994. "Does Consumer Sentiment Forecast Household Spending? If So, Why?," American Economic Review, American Economic Association, vol. 84(5), pages 1397-1408, December.
    12. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    13. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    14. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    15. Yuliya Demyanyk & Otto Van Hemert, 2011. "Understanding the Subprime Mortgage Crisis," Review of Financial Studies, Society for Financial Studies, vol. 24(6), pages 1848-1880.
    16. Bork, Lasse & Møller, Stig V., 2015. "Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection," International Journal of Forecasting, Elsevier, vol. 31(1), pages 63-78.
    17. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    18. Yock Y. Chong & David F. Hendry, 1986. "Econometric Evaluation of Linear Macro-Economic Models," Review of Economic Studies, Oxford University Press, vol. 53(4), pages 671-690.
    19. Monika Piazzesi & Martin Schneider, 2009. "Momentum Traders in the Housing Market: Survey Evidence and a Search Model," American Economic Review, American Economic Association, vol. 99(2), pages 406-411, May.
    20. Tyler H. McCormick & Adrian E. Raftery & David Madigan & Randall S. Burd, 2012. "Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification," Biometrics, The International Biometric Society, vol. 68(1), pages 23-30, March.
    21. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    22. Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012. "The short of it: Investor sentiment and anomalies," Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
    23. Glaeser, Edward L. & Nathanson, Charles G., 2017. "An extrapolative model of house price dynamics," Journal of Financial Economics, Elsevier, vol. 126(1), pages 147-170.
    24. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    25. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    26. Del Negro, Marco & Otrok, Christopher, 2007. "99 Luftballons: Monetary policy and the house price boom across U.S. states," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 1962-1985, October.
    27. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    28. Baker, Malcolm & Wurgler, Jeffrey & Yuan, Yu, 2012. "Global, local, and contagious investor sentiment," Journal of Financial Economics, Elsevier, vol. 104(2), pages 272-287.
    29. Martin Neil Baily & John B. Taylor (ed.), 2014. "Across the Great Divide: New Perspectives on the Financial Crisis," Books, Hoover Institution, Stanford University, number 8, December.
    30. Yu, Jianfeng & Yuan, Yu, 2011. "Investor sentiment and the mean-variance relation," Journal of Financial Economics, Elsevier, vol. 100(2), pages 367-381, May.
    31. Shen, Junyan & Yu, Jianfeng & Zhao, Shen, 2017. "Investor sentiment and economic forces," Journal of Monetary Economics, Elsevier, vol. 86(C), pages 1-21.
    32. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    33. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    34. Michael Lemmon & Evgenia Portniaguina, 2006. "Consumer Confidence and Asset Prices: Some Empirical Evidence," Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1499-1529.
    35. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christophe André & Petre Caraiani & Adrian Cantemir Čalin & Rangan Gupta, 2018. "Can Monetary Policy Lean against Housing Bubbles?," Working Papers 201877, University of Pretoria, Department of Economics.
    2. Hardik A. Marfatia & Christophe Andre & Rangan Gupta, 2020. "Predicting Housing Market Sentiment: The Role of Financial, Macroeconomic and Real Estate Uncertainties," Working Papers 202061, University of Pretoria, Department of Economics.
    3. Gupta, Rangan & Ma, Jun & Theodoridis, Konstantinos & Wohar, Mark E, 2020. "Is there a National Housing Market Bubble Brewing in the United States?," Cardiff Economics Working Papers E2020/3, Cardiff University, Cardiff Business School, Economics Section.
    4. Christou, Christina & Gupta, Rangan & Nyakabawo, Wendy, 2019. "Time-varying impact of uncertainty shocks on the US housing market," Economics Letters, Elsevier, vol. 180(C), pages 15-20.
    5. Rangan Gupta & Hardik A. Marfatia & Christian Pierdzioch & Afees A. Salisu, 2020. "Machine Learning Predictions of Housing Market Synchronization across US States: The Role of Uncertainty," Working Papers 202077, University of Pretoria, Department of Economics.
    6. Christophe Andre & David Gabauer & Rangan Gupta, 2020. "Time-Varying Spillovers between Housing Sentiment and Housing Market in the United States," Working Papers 202091, University of Pretoria, Department of Economics.
    7. Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
    8. Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2020. "The Role of Investor Sentiment in Forecasting Housing Returns in China: A Machine Learning Approach," Working Papers 202055, University of Pretoria, Department of Economics.
    9. Bauer, Gregory H., 2017. "International house price cycles, monetary policy and credit," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 88-114.
    10. Rangan Gupta & Chi Keung Marco Lau & Wendy Nyakabawo, 2018. "Predicting Aggregate and State-Level US House Price Volatility: The Role of Sentiment," Working Papers 201866, University of Pretoria, Department of Economics.
    11. Rangan Gupta & Chi Keung Marco Lau & Vasilios Plakandaras & Wing-Keung Wong, 2018. "The Role of Housing Sentiment in Forecasting US Home Sales Growth: Evidence from a Bayesian Compressed Vector Autoregressive Model," Working Papers 201842, University of Pretoria, Department of Economics.
    12. Petre Caraiani & Rangan Gupta & Chi Keung Marco Lau & Hardik A. Marfatia, 2019. "Effects of Conventional and Unconventional Monetary Policy Shocks on Housing Prices in the United States: The Role of Sentiment," Working Papers 201953, University of Pretoria, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    2. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    3. Han, Xing & Li, Youwei, 2017. "Can investor sentiment be a momentum time-series predictor? Evidence from China," Journal of Empirical Finance, Elsevier, vol. 42(C), pages 212-239.
    4. Shen, Junyan & Yu, Jianfeng & Zhao, Shen, 2017. "Investor sentiment and economic forces," Journal of Monetary Economics, Elsevier, vol. 86(C), pages 1-21.
    5. Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
    6. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    7. Kim, Jun Sik & Ryu, Doojin & Seo, Sung Won, 2014. "Investor sentiment and return predictability of disagreement," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 166-178.
    8. Liya Chu & Xue-Zhong He & Kai Li & Jun Tu, 2015. "Market Sentiment and Paradigm Shifts," Research Paper Series 356, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Ruan, Qingsong & Wang, Zilin & Zhou, Yaping & Lv, Dayong, 2020. "A new investor sentiment indicator (ISI) based on artificial intelligence: A powerful return predictor in China," Economic Modelling, Elsevier, vol. 88(C), pages 47-58.
    10. Dong, Dayong & Yue, Sishi & Cao, Jiawei, 2020. "Site visit information content and return predictability: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    11. Wenjie Ding & Khelifa Mazouz & Qingwei Wang, 2019. "Investor sentiment and the cross-section of stock returns: new theory and evidence," Review of Quantitative Finance and Accounting, Springer, vol. 53(2), pages 493-525, August.
    12. Chue, Timothy K. & Gul, Ferdinand A. & Mian, G. Mujtaba, 2019. "Aggregate investor sentiment and stock return synchronicity," Journal of Banking & Finance, Elsevier, vol. 108(C).
    13. Stefano Cassella & Huseyin Gulen, 2018. "Extrapolation Bias and the Predictability of Stock Returns by Price-Scaled Variables," Review of Financial Studies, Society for Financial Studies, vol. 31(11), pages 4345-4397.
    14. Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
    15. Nikos C. Papapostolou & Nikos K. Nomikos & Panos K. Pouliasis & Ioannis Kyriakou, 2014. "Investor Sentiment for Real Assets: The Case of Dry Bulk Shipping Market," Review of Finance, European Finance Association, vol. 18(4), pages 1507-1539.
    16. Atanasov, Victoria, 2018. "World output gap and global stock returns," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 181-197.
    17. Zaremba, Adam & Szyszka, Adam & Long, Huaigang & Zawadka, Dariusz, 2020. "Business sentiment and the cross-section of global equity returns," Pacific-Basin Finance Journal, Elsevier, vol. 61(C).
    18. Kim Kaivanto & Peng Zhang, 2019. "Investor Sentiment as a Predictor of Market Returns," Working Papers 268005798, Lancaster University Management School, Economics Department.
    19. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    20. Fong, Wai Mun & Toh, Benjamin, 2014. "Investor sentiment and the MAX effect," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 190-201.

    More about this item

    Keywords

    Housing sentiment; house price forecastability; partial least squares; dynamic model averaging;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E3 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aah:create:2016-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.econ.au.dk/afn/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.