IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v44y2025i2p513-546.html
   My bibliography  Save this article

Forecasting Equity Premium in the Face of Climate Policy Uncertainty

Author

Listed:
  • Hyder Ali
  • Salma Naz

Abstract

This study examines the role of the US climate policy uncertainty (CPU) index in forecasting the equity premium, employing shrinkage methods such as LASSO and elastic net (ENet) to dynamically select predictors from a dataset spanning April 1987 to December 2022. Alongside CPU, other uncertainty predictors like economic policy uncertainty (EPU), geopolitical risk (GPR), and the volatility index (VIX) are considered to assess their complementary roles in out‐of‐sample (OOS) equity premium forecasting. The results reveal that while CPU alone cannot consistently predict the equity premium, it provides crucial complementary information when combined with other predictors, leading to a statistically significant OOS R2$$ {R}^2 $$ of 1.231%. The relationship between CPU and the equity premium is time varying, with a stronger influence observed during periods of economic downturn or heightened uncertainty, as demonstrated by wavelet coherence analysis. This study also identifies CPU's significant impact on industry‐specific returns, particularly in climate‐sensitive sectors, offering valuable insights for investment strategies and risk management in an era of increasing CPU.

Suggested Citation

  • Hyder Ali & Salma Naz, 2025. "Forecasting Equity Premium in the Face of Climate Policy Uncertainty," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 513-546, March.
  • Handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:513-546
    DOI: 10.1002/for.3206
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3206
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3206?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Arzu Ozoguz, 2009. "Good Times or Bad Times? Investors' Uncertainty and Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4377-4422, November.
    3. Xu, Yongan & Li, Ming & Yan, Wen & Bai, Jiancheng, 2022. "Predictability of the renewable energy market returns: The informational gains from the climate policy uncertainty," Resources Policy, Elsevier, vol. 79(C).
    4. Bolton, Patrick & Kacperczyk, Marcin, 2021. "Do investors care about carbon risk?," Journal of Financial Economics, Elsevier, vol. 142(2), pages 517-549.
    5. Pástor, Ľuboš & Veronesi, Pietro, 2013. "Political uncertainty and risk premia," Journal of Financial Economics, Elsevier, vol. 110(3), pages 520-545.
    6. Lubos Pástor & Pietro Veronesi, 2012. "Uncertainty about Government Policy and Stock Prices," Journal of Finance, American Finance Association, vol. 67(4), pages 1219-1264, August.
    7. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    8. Li, Jiahan & Tsiakas, Ilias, 2017. "Equity premium prediction: The role of economic and statistical constraints," Journal of Financial Markets, Elsevier, vol. 36(C), pages 56-75.
    9. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2021. "Sustainable investing in equilibrium," Journal of Financial Economics, Elsevier, vol. 142(2), pages 550-571.
    10. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    11. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    12. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    13. Mehmet Balcilar & David Gabauer & Rangan Gupta & Christian Pierdzioch, 2023. "Climate Risks and Forecasting Stock Market Returns in Advanced Economies over a Century," Mathematics, MDPI, vol. 11(9), pages 1-21, April.
    14. Afees A. Salisu & Christian Pierdzioch & Rangan Gupta & Reneé van Eyden, 2023. "Climate risks and U.S. stock‐market tail risks: A forecasting experiment using over a century of data," International Review of Finance, International Review of Finance Ltd., vol. 23(2), pages 228-244, June.
    15. Zhang, Yaojie & Wei, Yu & Ma, Feng & Yi, Yongsheng, 2019. "Economic constraints and stock return predictability: A new approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 1-9.
    16. Karmakar, Sayar & Gupta, Rangan & Cepni, Oguzhan & Rognone, Lavinia, 2023. "Climate risks and predictability of the trading volume of gold: Evidence from an INGARCH model," Resources Policy, Elsevier, vol. 82(C).
    17. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    18. Lv, Wendai & Qi, Jipeng, 2022. "Stock market return predictability: A combination forecast perspective," International Review of Financial Analysis, Elsevier, vol. 84(C).
    19. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    20. Hu Wang & Shouwei Li & Yuyin Ma, 2023. "Climate policy and financial system stability: evidence from Chinese fund markets," Climate Policy, Taylor & Francis Journals, vol. 23(4), pages 395-408, April.
    21. David E. Rapach & Mark E. Wohar, 2006. "Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 238-274.
    22. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    23. Xu, Yongan & Wang, Jianqiong & Chen, Zhonglu & Liang, Chao, 2021. "Economic policy uncertainty and stock market returns: New evidence," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    24. Cheng, Feiyang & Wang, Chunfeng & Cui, Xin & Wu, Ji & He, Feng, 2021. "Economic policy uncertainty exposure and stock price bubbles: Evidence from China," International Review of Financial Analysis, Elsevier, vol. 78(C).
    25. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and realized volatility of major commodity currency exchange rates," Journal of Financial Markets, Elsevier, vol. 62(C).
    26. Michael Barnett, 2023. "Climate Change and Uncertainty: An Asset Pricing Perspective," Management Science, INFORMS, vol. 69(12), pages 7562-7584, December.
    27. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    28. Ahmed, Walid M.A., 2022. "On the higher-order moment interdependence of stock and commodity markets: A wavelet coherence analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 83(C), pages 135-151.
    29. Zaremba, Adam & Cakici, Nusret & Demir, Ender & Long, Huaigang, 2022. "When bad news is good news: Geopolitical risk and the cross-section of emerging market stock returns," Journal of Financial Stability, Elsevier, vol. 58(C).
    30. Li Liu & Feng Ma & Qing Zeng & Yaojie Zhang, 2020. "Forecasting the aggregate stock market volatility in a data-rich world," Applied Economics, Taylor & Francis Journals, vol. 52(32), pages 3448-3463, June.
    31. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    32. Liguang Zhang & Wanyi Chen & Ning Hu, 2021. "Economic policy uncertainty and stock liquidity: evidence from China," International Journal of Emerging Markets, Emerald Group Publishing Limited, vol. 18(1), pages 22-44, March.
    33. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    34. Xiao-lin Li & Mehmet Balcilar & Rangan Gupta & Tsangyao Chang, 2016. "The Causal Relationship Between Economic Policy Uncertainty and Stock Returns in China and India: Evidence from a Bootstrap Rolling Window Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(3), pages 674-689, March.
    35. Lv, Wendai & Li, Bin, 2023. "Climate policy uncertainty and stock market volatility: Evidence from different sectors," Finance Research Letters, Elsevier, vol. 51(C).
    36. Rodriguez Lopez, Juan Miguel & Sakhel, Alice & Busch, Timo, 2017. "Corporate investments and environmental regulation: The role of regulatory uncertainty, regulation-induced uncertainty, and investment history," European Management Journal, Elsevier, vol. 35(1), pages 91-101.
    37. Alam, Ahmed W. & Houston, Reza & Farjana, Ashupta, 2023. "Geopolitical risk and corporate investment: How do politically connected firms respond?," Finance Research Letters, Elsevier, vol. 53(C).
    38. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Tran, Vuong Thao, 2018. "Can economic policy uncertainty predict stock returns? Global evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 134-150.
    39. Jonathan Iworiso & Spyridon Vrontos, 2020. "On the directional predictability of equity premium using machine learning techniques," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 449-469, April.
    40. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    41. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    42. Atsushi Inoue & Barbara Rossi, 2011. "Identifying the Sources of Instabilities in Macroeconomic Fluctuations," The Review of Economics and Statistics, MIT Press, vol. 93(4), pages 1186-1204, November.
    43. Pal, Debdatta & Mitra, Subrata K., 2019. "Oil price and automobile stock return co-movement: A wavelet coherence analysis," Economic Modelling, Elsevier, vol. 76(C), pages 172-181.
    44. Yuan, Di & Li, Sufang & Li, Rong & Zhang, Feipeng, 2022. "Economic policy uncertainty, oil and stock markets in BRIC: Evidence from quantiles analysis," Energy Economics, Elsevier, vol. 110(C).
    45. Schlenker, Wolfram & Taylor, Charles A., 2021. "Market expectations of a warming climate," Journal of Financial Economics, Elsevier, vol. 142(2), pages 627-640.
    46. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    47. Marcin Kacperczyk & Stijn Van Nieuwerburgh & Laura Veldkamp, 2016. "A Rational Theory of Mutual Funds' Attention Allocation," Econometrica, Econometric Society, vol. 84, pages 571-626, March.
    48. Sun, Yongping & Yang, Ying & Huang, Nan & Zou, Xin, 2020. "The impacts of climate change risks on financial performance of mining industry: Evidence from listed companies in China," Resources Policy, Elsevier, vol. 69(C).
    49. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    50. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    51. Faccini, Renato & Matin, Rastin & Skiadopoulos, George, 2023. "Dissecting climate risks: Are they reflected in stock prices?," Journal of Banking & Finance, Elsevier, vol. 155(C).
    52. Kurov, Alexander & Stan, Raluca, 2018. "Monetary policy uncertainty and the market reaction to macroeconomic news," Journal of Banking & Finance, Elsevier, vol. 86(C), pages 127-142.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    2. Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
    3. Iason Kynigakis & Ekaterini Panopoulou, 2022. "Does model complexity add value to asset allocation? Evidence from machine learning forecasting models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 603-639, April.
    4. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    5. Nusret Cakici & Christian Fieberg & Daniel Metko & Adam Zaremba, 2024. "Do Anomalies Really Predict Market Returns? New Data and New Evidence," Review of Finance, European Finance Association, vol. 28(1), pages 1-44.
    6. Chen, Juan & Ma, Feng & Qiu, Xuemei & Li, Tao, 2023. "The role of categorical EPU indices in predicting stock-market returns," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 365-378.
    7. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    8. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    9. Zhang, Yaojie & Wahab, M.I.M. & Wang, Yudong, 2023. "Forecasting crude oil market volatility using variable selection and common factor," International Journal of Forecasting, Elsevier, vol. 39(1), pages 486-502.
    10. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    11. Niu, Zibo & Wang, Chenlu & Zhang, Hongwei, 2023. "Forecasting stock market volatility with various geopolitical risks categories: New evidence from machine learning models," International Review of Financial Analysis, Elsevier, vol. 89(C).
    12. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    13. Yong Qu & Ying Yuan, 2025. "Predicting Equity Premium: A New Momentum Indicator Selection Strategy With Machine Learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 424-435, March.
    14. Dominik Wolff & Ulrich Neugebauer, 2019. "Tree-based machine learning approaches for equity market predictions," Journal of Asset Management, Palgrave Macmillan, vol. 20(4), pages 273-288, July.
    15. Ma, Feng & Lu, Xinjie & Liu, Jia & Huang, Dengshi, 2022. "Macroeconomic attention and stock market return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    16. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
    17. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
    18. Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
    19. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    20. Liang, Chao & Xu, Yongan & Wang, Jianqiong & Yang, Mo, 2022. "Whether dimensionality reduction techniques can improve the ability of sentiment proxies to predict stock market returns," International Review of Financial Analysis, Elsevier, vol. 82(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:2:p:513-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.