IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v667y2025ics0378437125002122.html
   My bibliography  Save this article

Risk spillover between cryptocurrencies and traditional currencies: An analysis based on neural network quantile regression

Author

Listed:
  • Zhang, Shunqi
  • Xu, Qiuhua
  • Ding, Xuerou
  • Han, Kefei

Abstract

The burgeoning prominence of cryptocurrencies within the global financial landscape necessitates a reevaluation of their interplay with conventional currencies. This paper employs a neural network quantile regression (NNQR) framework to delineate a risk spillover network encompassing nine cryptocurrencies and eleven traditional currencies. Our findings suggest that cryptocurrencies are less affected by traditional currencies during systemic crises such as the COVID-19 pandemic, despite the escalation of system-wide risk. Cryptocurrency exposures also come mainly within their markets during special times, which exhibits a significant degree of autonomy. This autonomy positions them as potential short-term hedges against policy-induced risks. Furthermore, our study also finds that cryptocurrencies have less betweenness centrality compared to traditional currencies, but their closeness centrality is not much different from traditional currencies. Our research identifies the Canadian dollar and the Indian rupee as being notably vulnerable to risk spillovers emanating from the cryptocurrency sector. However, there are significant differences in the traditional currencies that have a considerable impact on different cryptocurrencies. This study offers novel perspectives for investors considering the utilization of cryptocurrencies for out-of-market risk hedging strategies.

Suggested Citation

  • Zhang, Shunqi & Xu, Qiuhua & Ding, Xuerou & Han, Kefei, 2025. "Risk spillover between cryptocurrencies and traditional currencies: An analysis based on neural network quantile regression," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 667(C).
  • Handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s0378437125002122
    DOI: 10.1016/j.physa.2025.130560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437125002122
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2025.130560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    3. Afshan, Sahar & Yaqoob, Tanzeela & Zaied, Younes Ben & Mishra, Shekhar & Mishra, Sibanjan, 2024. "Oil shocks and currency behavior: A dual approach to digital and traditional currencies," Global Finance Journal, Elsevier, vol. 62(C).
    4. David Easley & Marcos López de Prado & Maureen O’Hara & Zhibai Zhang, 2021. "Microstructure in the Machine Age," NBER Chapters, in: Big Data: Long-Term Implications for Financial Markets and Firms, pages 3316-3363, National Bureau of Economic Research, Inc.
    5. Hemendra Gupta & Rashmi Chaudhary, 2022. "An Empirical Study of Volatility in Cryptocurrency Market," JRFM, MDPI, vol. 15(11), pages 1-14, November.
    6. Selgin, George, 2015. "Synthetic commodity money," Journal of Financial Stability, Elsevier, vol. 17(C), pages 92-99.
    7. Amini, Shahram & Elmore, Ryan & Öztekin, Özde & Strauss, Jack, 2021. "Can machines learn capital structure dynamics?," Journal of Corporate Finance, Elsevier, vol. 70(C).
    8. Kristjanpoller, Werner & Bouri, Elie, 2019. "Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1057-1071.
    9. Zhou, Fan, 2024. "Cryptocurrency: A new player or a new crisis in financial markets? —— Evolutionary analysis of association and risk spillover based on network science," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    10. Chengying He & Yong Li & Tianqi Wang & Salman Ali Shah, 2024. "Is cryptocurrency a hedging tool during economic policy uncertainty? An empirical investigation," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    11. Elsayed, Ahmed H. & Gozgor, Giray & Lau, Chi Keung Marco, 2022. "Risk transmissions between bitcoin and traditional financial assets during the COVID-19 era: The role of global uncertainties," International Review of Financial Analysis, Elsevier, vol. 81(C).
    12. Li, Jiang-Cheng & Xu, Yi-Zhen & Tao, Chen & Zhong, Guang-Yan, 2025. "Multi-period impacts and network connectivity of cryptocurrencies to international stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
    13. Bouri, Elie & Gupta, Rangan & Tiwari, Aviral Kumar & Roubaud, David, 2017. "Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions," Finance Research Letters, Elsevier, vol. 23(C), pages 87-95.
    14. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    15. Liu, Zixin & Hu, Jun & Zhang, Shuguang & He, Zhipeng, 2024. "Risk spillovers among oil, gold, stock, and foreign exchange markets: Evidence from G20 economies," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    16. Zhu, Bo & Deng, Yuanyue & Hu, Xin, 2023. "Global energy security: Do internal and external risk spillovers matter? A multilayer network method," Energy Economics, Elsevier, vol. 126(C).
    17. Jiang, Wen & Xu, Qiuhua & Zhang, Ruige, 2022. "Tail-event driven network of cryptocurrencies and conventional assets," Finance Research Letters, Elsevier, vol. 46(PB).
    18. Ahmed BenSaïda, 2023. "The linkage between Bitcoin and foreign exchanges in developed and emerging markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-27, December.
    19. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    20. Łukasz Goczek & Ivan Skliarov, 2019. "What drives the Bitcoin price? A factor augmented error correction mechanism investigation," Applied Economics, Taylor & Francis Journals, vol. 51(59), pages 6393-6410, December.
    21. Glasserman, Paul & Young, H. Peyton, 2016. "Contagion in financial networks," LSE Research Online Documents on Economics 68681, London School of Economics and Political Science, LSE Library.
    22. Urquhart, Andrew & Zhang, Hanxiong, 2019. "Is Bitcoin a hedge or safe haven for currencies? An intraday analysis," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 49-57.
    23. Sean Foley & Jonathan R Karlsen & Tālis J Putniņš, 2019. "Sex, Drugs, and Bitcoin: How Much Illegal Activity Is Financed through Cryptocurrencies?," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1798-1853.
    24. Li, Jingming & Li, Nianping & Peng, Jinqing & Cui, Haijiao & Wu, Zhibin, 2019. "Energy consumption of cryptocurrency mining: A study of electricity consumption in mining cryptocurrencies," Energy, Elsevier, vol. 168(C), pages 160-168.
    25. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    26. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    27. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    28. Garlaschelli, Diego & Battiston, Stefano & Castri, Maurizio & Servedio, Vito D.P. & Caldarelli, Guido, 2005. "The scale-free topology of market investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 491-499.
    29. Jon Carrick, 2016. "Bitcoin as a Complement to Emerging Market Currencies," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(10), pages 2321-2334, October.
    30. Xu, Qiuhua & Zhang, Yixuan & Zhang, Ziyang, 2021. "Tail-risk spillovers in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 38(C).
    31. Reboredo, Juan C. & Ugolini, Andrea, 2020. "Price connectedness between green bond and financial markets," Economic Modelling, Elsevier, vol. 88(C), pages 25-38.
    32. Tomohiro Ando & Matthew Greenwood-Nimmo & Yongcheol Shin, 2022. "Quantile Connectedness: Modeling Tail Behavior in the Topology of Financial Networks," Management Science, INFORMS, vol. 68(4), pages 2401-2431, April.
    33. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    34. Palazzi, Rafael Baptista & Júnior, Gerson de Souza Raimundo & Klotzle, Marcelo Cabus, 2021. "The dynamic relationship between bitcoin and the foreign exchange market: A nonlinear approach to test causality between bitcoin and currencies," Finance Research Letters, Elsevier, vol. 42(C).
    35. Kim, Thomas, 2017. "On the transaction cost of Bitcoin," Finance Research Letters, Elsevier, vol. 23(C), pages 300-305.
    36. Kundan Mukhia & Anish Rai & SR Luwang & Md Nurujjaman & Sushovan Majhi & Chittaranjan Hens, 2024. "Complex network analysis of cryptocurrency market during crashes," Papers 2405.05642, arXiv.org.
    37. Mukhia, Kundan & Rai, Anish & Luwang, S.R. & Nurujjaman, Md & Majhi, Sushovan & Hens, Chittaranjan, 2024. "Complex network analysis of cryptocurrency market during crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 653(C).
    38. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    39. Duan, Kun & Zhao, Yanqi & Urquhart, Andrew & Huang, Yingying, 2023. "Do clean and dirty cryptocurrencies connect with financial assets differently? The role of economic policy uncertainty," Energy Economics, Elsevier, vol. 127(PA).
    40. Georg Keilbar & Weining Wang, 2022. "Modelling systemic risk using neural network quantile regression," Empirical Economics, Springer, vol. 62(1), pages 93-118, January.
    41. Paul Glasserman & H. Peyton Young, 2016. "Contagion in Financial Networks," Journal of Economic Literature, American Economic Association, vol. 54(3), pages 779-831, September.
    42. David Y. Aharon & Zaghum Umar & Xuan Vinh Vo, 2021. "Dynamic spillovers between the term structure of interest rates, bitcoin, and safe-haven currencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-25, December.
    43. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    44. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    45. Marco Bardoscia & Paolo Barucca & Stefano Battiston & Fabio Caccioli & Giulio Cimini & Diego Garlaschelli & Fabio Saracco & Tiziano Squartini & Guido Caldarelli, 2021. "The Physics of Financial Networks," Papers 2103.05623, arXiv.org.
    46. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    47. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    48. Ng, Serena, 2006. "Testing Cross-Section Correlation in Panel Data Using Spacings," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 12-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karim, Sitara & Shafiullah, Muhammad & Naeem, Muhammad Abubakr, 2024. "When one domino falls, others follow: A machine learning analysis of extreme risk spillovers in developed stock markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    2. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Palazzi, Rafael Baptista & Júnior, Gerson de Souza Raimundo & Klotzle, Marcelo Cabus, 2021. "The dynamic relationship between bitcoin and the foreign exchange market: A nonlinear approach to test causality between bitcoin and currencies," Finance Research Letters, Elsevier, vol. 42(C).
    4. Georg Keilbar & Weining Wang, 2022. "Modelling systemic risk using neural network quantile regression," Empirical Economics, Springer, vol. 62(1), pages 93-118, January.
    5. Asil Azimli, 2024. "Time-varying spillovers in high-order moments among cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-39, December.
    6. Khalfaoui, Rabeh & Mefteh-Wali, Salma & Dogan, Buhari & Ghosh, Sudeshna, 2023. "Extreme spillover effect of COVID-19 pandemic-related news and cryptocurrencies on green bond markets: A quantile connectedness analysis," International Review of Financial Analysis, Elsevier, vol. 86(C).
    7. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    8. Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Cryptocurrencies vs. US dollar: Evidence from causality in quantiles analysis," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 238-252.
    9. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    10. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    11. Jiang, Wen & Xu, Qiuhua & Zhang, Ruige, 2022. "Tail-event driven network of cryptocurrencies and conventional assets," Finance Research Letters, Elsevier, vol. 46(PB).
    12. Hsu, Shu-Han & Sheu, Chwen & Yoon, Jiho, 2021. "Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    13. Zhao, Mingguo & Park, Hail, 2024. "Quantile time-frequency spillovers among green bonds, cryptocurrencies, and conventional financial markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    14. Bhattacherjee, Purba & Mishra, Sibanjan & Kang, Sang Hoon, 2025. "Extreme frequency connectedness, determinants and portfolio analysis of major cryptocurrencies: Insights from quantile time-frequency approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 100(C).
    15. Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    16. Chen, Bin-xia & Sun, Yan-lin, 2024. "Financial market connectedness between the U.S. and China: A new perspective based on non-linear causality networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    17. Zeng, Qing & Lu, Xinjie & Xu, Jin & Lin, Yu, 2024. "Macro-Driven Stock Market Volatility Prediction: Insights from a New Hybrid Machine Learning Approach," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    18. Ángeles Cebrián-Hernández & Enrique Jiménez-Rodríguez, 2021. "Modeling of the Bitcoin Volatility through Key Financial Environment Variables: An Application of Conditional Correlation MGARCH Models," Mathematics, MDPI, vol. 9(3), pages 1-16, January.
    19. Zhang, Hongwei & Zhao, Xinyi & Gao, Wang & Niu, Zibo, 2023. "The role of higher moments in predicting China's oil futures volatility: Evidence from machine learning models," Journal of Commodity Markets, Elsevier, vol. 32(C).
    20. Nusret Cakici & Christian Fieberg & Daniel Metko & Adam Zaremba, 2024. "Do Anomalies Really Predict Market Returns? New Data and New Evidence," Review of Finance, European Finance Association, vol. 28(1), pages 1-44.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:667:y:2025:i:c:s0378437125002122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.