IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v658y2025ics0378437124008094.html
   My bibliography  Save this article

Multi-period impacts and network connectivity of cryptocurrencies to international stock markets

Author

Listed:
  • Li, Jiang-Cheng
  • Xu, Yi-Zhen
  • Tao, Chen
  • Zhong, Guang-Yan

Abstract

Compared to traditional financial assets, cryptocurrencies exhibit higher volatility and uncertainty, with price fluctuations that are more difficult to predict. This heightened unpredictability can significantly affect global stock markets and profoundly influence the evolution of their risk network structures. Therefore, it is crucial to examine the multi-period connectivity and impacts of cryptocurrencies on the risk networks of international stock markets, alongside exploring the dynamic topological structures and evolutionary patterns of these networks. This study draws on complex systems and network theory, introducing a novel framework for analyzing multi-period connectivity and impacts, applied to six cryptocurrencies and the stock markets of G7 countries. It examines the multi-period effects of cryptocurrencies on global market risk network connectivity, impacts, and topology, while also testing the power-law behavior of network topologies across multi-periods. Empirical analysis reveals that: (1) Volatility in the short and medium terms following cryptocurrency shocks is more pronounced, with short-term fluctuations being larger and long-term factors exerting a greater influence on network characteristics; (2) XRP causes substantial disruptions, leading to increased volatility in the Japanese stock market; (3) Cryptocurrencies significantly enhance the connectivity of risk networks among G7 countries; and (4) Across different periods, the network exhibits a similar power-law distribution, with both risk concentration and diffusion effects showing identical trends of variation. However, in the short term, the average node connectivity is higher, and the network is more likely to evolve a core of risk contagion over the long term.

Suggested Citation

  • Li, Jiang-Cheng & Xu, Yi-Zhen & Tao, Chen & Zhong, Guang-Yan, 2025. "Multi-period impacts and network connectivity of cryptocurrencies to international stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 658(C).
  • Handle: RePEc:eee:phsmap:v:658:y:2025:i:c:s0378437124008094
    DOI: 10.1016/j.physa.2024.130299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124008094
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Xie, Wenhao & Cao, Guangxi, 2024. "Volatility and returns connectedness between cryptocurrency and China’s financial markets: A TVP-VAR extended joint connectedness approach," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    3. Cagli, Efe Caglar & Mandaci, Pinar Evrim, 2023. "Time and frequency connectedness of uncertainties in cryptocurrency, stock, currency, energy, and precious metals markets," Emerging Markets Review, Elsevier, vol. 55(C).
    4. Todorova, Lora & Vogt, Bodo, 2011. "Power law distribution in high frequency financial data? An econometric analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4433-4444.
    5. Uddin, Gazi Salah & Shahzad, Syed Jawad Hussain & Boako, Gideon & Hernandez, Jose Areola & Lucey, Brian M., 2019. "Heterogeneous interconnections between precious metals: Evidence from asymmetric and frequency-domain spillover analysis," Resources Policy, Elsevier, vol. 64(C).
    6. Chatziantoniou, Ioannis & Gabauer, David & Gupta, Rangan, 2023. "Integration and risk transmission in the market for crude oil: New evidence from a time-varying parameter frequency connectedness approach," Resources Policy, Elsevier, vol. 84(C).
    7. Valenti, Davide & Spagnolo, Bernardo & Bonanno, Giovanni, 2007. "Hitting time distributions in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 311-320.
    8. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    9. G. Bonanno & D. Valenti & B. Spagnolo, 2005. "Role of Noise in a Market Model with Stochastic Volatility," Papers cond-mat/0510154, arXiv.org, revised Oct 2006.
    10. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    11. Jing, Ruixue & Rocha, Luis E.C., 2023. "A network-based strategy of price correlations for optimal cryptocurrency portfolios," Finance Research Letters, Elsevier, vol. 58(PC).
    12. Kumar, Sushil & Kumar, Sunil & Kumar, Pawan, 2020. "Diffusion entropy analysis and random matrix analysis of the Indian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    13. Shiyun Li & Yiping Huang, 2020. "Do Cryptocurrencies Increase the Systemic Risk of the Global Financial Market?," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(1), pages 122-143, January.
    14. Leonardo H. S. Fernandes & Jos㉠W. L. Silva & Fernando H. A. Araujo & Aurelio F. Bariviera, 2024. "Quantifying The Covid-19 Shock In Cryptocurrencies," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 32(01), pages 1-19.
    15. Ugolini, Andrea & Reboredo, Juan C. & Mensi, Walid, 2023. "Connectedness between DeFi, cryptocurrency, stock, and safe-haven assets," Finance Research Letters, Elsevier, vol. 53(C).
    16. Tiziano Squartini & Assaf Almog & Guido Caldarelli & Iman van Lelyveld & Diego Garlaschelli & Giulio Cimini, 2016. "Enhanced capital-asset pricing model for the reconstruction of bipartite financial networks," Papers 1606.07684, arXiv.org, revised Sep 2017.
    17. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    18. Podobnik, Boris & Grosse, Ivo & Eugene Stanley, H, 2002. "Stochastic processes with power-law stability and a crossover in power-law correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 153-159.
    19. Kaizoji, Taisei & Miyano, Michiko, 2016. "Why does the power law for stock price hold?," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 19-23.
    20. Pisarenko, V. & Sornette, D., 2006. "New statistic for financial return distributions: Power-law or exponential?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 387-400.
    21. Bouri, Elie & Lau, Chi Keung Marco & Saeed, Tareq & Wang, Shixuan & Zhao, Yuqian, 2021. "On the intraday return curves of Bitcoin: Predictability and trading opportunities," International Review of Financial Analysis, Elsevier, vol. 76(C).
    22. Bernardo Spagnolo & Davide Valenti, 2008. "Volatility Effects on the Escape Time in Financial Market Models," Papers 0810.1625, arXiv.org.
    23. Matthias Lischke & Benjamin Fabian, 2016. "Analyzing the Bitcoin Network: The First Four Years," Future Internet, MDPI, vol. 8(1), pages 1-40, March.
    24. Noe Rodriguez-Rodriguez & Octavio Miramontes, 2022. "Shannon entropy: an econophysical approach to cryptocurrency portfolios," Papers 2210.02633, arXiv.org.
    25. Elie Bouri & Ladislav Kristoufek & Tanveer Ahmad & Syed Jawad Hussain Shahzad, 2024. "Microstructure noise and idiosyncratic volatility anomalies in cryptocurrencies," Annals of Operations Research, Springer, vol. 334(1), pages 547-573, March.
    26. Tomas Scagliarini & Giuseppe Pappalardo & Alessio Emanuele Biondo & Alessandro Pluchino & Andrea Rapisarda & Sebastiano Stramaglia, 2022. "Pairwise and high-order dependencies in the cryptocurrency trading network," Papers 2207.04004, arXiv.org.
    27. Tiziano Squartini & Guido Caldarelli & Giulio Cimini & Andrea Gabrielli & Diego Garlaschelli, 2018. "Reconstruction methods for networks: the case of economic and financial systems," Papers 1806.06941, arXiv.org.
    28. G. Bonanno & D. Valenti & B. Spagnolo, 2006. "Role of noise in a market model with stochastic volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 53(3), pages 405-409, October.
    29. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2016. "Intra- and inter-regional return and volatility spillovers across emerging and developed markets: Evidence from stock indices and stock index futures," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 96-114.
    30. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    31. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    32. Xin Sui & Guifen Shi & Guanchong Hou & Shaohan Huang & Yanshuang Li & Paulo Jorge Silveira Ferreira, 2022. "Impacts of COVID-19 on the Return and Volatility Nexus among Cryptocurrency Market," Complexity, Hindawi, vol. 2022, pages 1-15, May.
    33. Fernandes, Leonardo H.S. & Bouri, Elie & Silva, José W.L. & Bejan, Lucian & de Araujo, Fernando H.A., 2022. "The resilience of cryptocurrency market efficiency to COVID-19 shock," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Chen & Zhong, Guang-Yan & Li, Jiang-Cheng, 2023. "Dynamic correlation and risk resonance among industries of Chinese stock market: New evidence from time–frequency domain and complex network perspectives," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    2. Ko, Bonggyun & Song, Jae Wook, 2018. "A simple analytics framework for evaluating mean escape time in different term structures with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 398-412.
    3. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    4. Li, Jiang-Cheng & Tao, Chen & Li, Hai-Feng, 2022. "Dynamic forecasting performance and liquidity evaluation of financial market by Econophysics and Bayesian methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    5. Dong, Yang & Wen, Shu-hui & Hu, Xiao-bing & Li, Jiang-Cheng, 2020. "Stochastic resonance of drawdown risk in energy market prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    6. Gong, Xiao-li & Zhuang, Xin-tian, 2016. "Option pricing and hedging for optimized Lévy driven stochastic volatility models," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 118-127.
    7. Zheng, Jinlin & Wen, Baoyu & Jiang, Yaohui & Wang, Xiaohan & Shen, Yue, 2023. "Risk spillovers across geopolitical risk and global financial markets," Energy Economics, Elsevier, vol. 127(PA).
    8. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    9. Bhattacherjee, Purba & Mishra, Sibanjan & Kang, Sang Hoon, 2024. "Extreme time-frequency connectedness across U.S. sector stock and commodity futures markets," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 1176-1197.
    10. Su, Xianfang & Zhao, Yachao, 2025. "Risk spillovers between Chinese new energy futures and carbon-intensive assets: Asymmetric effect, time–frequency dynamics, and portfolio strategies," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
    11. Li, Jiang-Cheng & Xu, Ming-Zhe & Han, Xu & Tao, Chen, 2022. "Dynamic risk resonance between crude oil and stock market by econophysics and machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Zhang, Qingye & Gao, Yan, 2016. "Optimal consumption—portfolio problem with CVaR constraints," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 516-521.
    13. Chen, Yanhui & Zhou, Xiaoyu & Chen, Shun & Mi, Jackson Jinhong, 2024. "LNG freight rate and LNG price, carbon price, geopolitical risk: A dynamic connectedness analysis," Energy, Elsevier, vol. 302(C).
    14. Shang, Jin & Hamori, Shigeyuki, 2024. "Quantile time-frequency connectedness analysis between crude oil, gold, financial markets, and macroeconomic indicators: Evidence from the US and EU," Energy Economics, Elsevier, vol. 132(C).
    15. Yushi Xu & Baifan Chen & Jionghao Huang & Qingsha Hu & Shuning Kong, 2024. "Time–frequency connectedness between heterogeneous oil price shocks and inflation: a comparative analysis of developed and emerging economies," Economic Change and Restructuring, Springer, vol. 57(6), pages 1-42, December.
    16. Iqbal, Najaf & Umar, Zaghum & Ruman, Asif M. & Jiang, Shaohua, 2024. "The term structure of yield curve and connectedness among ESG investments," Research in International Business and Finance, Elsevier, vol. 67(PA).
    17. Wu, Anshun & Dong, Yang & Luo, Yuhui & Zeng, Chunhua, 2020. "Fluctuations-induced regime shifts in the Endogenous Credit system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    18. Yang, Yajie & Zhao, Longfeng & Chen, Lin & Wang, Chao & Wang, Gang-Jin, 2025. "The spillover effects between renewable energy tokens and energy assets," Research in International Business and Finance, Elsevier, vol. 74(C).
    19. Xu, Danyang & Hu, Yang & Oxley, Les & Lin, Boqiang & He, Yongda, 2025. "Exploring the connectedness between major volatility indexes and worldwide sustainable investments," International Review of Financial Analysis, Elsevier, vol. 97(C).
    20. Zhou, Wei & Zhong, Guang-Yan & Li, Jiang-Cheng, 2022. "Stability of financial market driven by information delay and liquidity in delay agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:658:y:2025:i:c:s0378437124008094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.