IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v69y2024ipas1062940823001596.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework

Author

Listed:
  • Chen, Bin-xia
  • Sun, Yan-lin

Abstract

Existing research pays less attention to the risk characteristics and connectedness of higher moments of cryptocurrencies. We dynamically analyze the risk characteristics of cryptocurrencies and their connectedness at four levels: return, volatility, skewness, and kurtosis. First, there are price bubbles in five popular cryptocurrencies, with long bubble periods during the COVID-19 epidemic. The volatility, skewness and kurtosis of cryptocurrencies are characterized by high persistence, with the exception of BNB. Second, the connectedness between the five cryptocurrencies is significant at higher moment conditions. The results for time-varying connectedness show that the total spillover of volatility, skewness and kurtosis varies over a wider range than returns, and that the total spillover of returns, volatility and skewness peaks during COVID-19. According to the pairwise results, there is strong connectedness between Ether and Bitcoin at the level of returns, volatility, skewness, and kurtosis, which is more significant at higher moments. Third, the role of cryptocurrencies changes not only over time, but also over order moments. The cryptocurrency market experienced significant volatility during 2018 and the first half of 2019, with Bitcoin being the most significant net exporter of returns and volatility spillovers. Cardano is a net exporter of both skewness and kurtosis spillover, and it is highly persistent with respect to volatility, skewness, and kurtosis. Overall, the leader in risk spillover at all order moments is Ether, and the net receiver is BNB.

Suggested Citation

  • Chen, Bin-xia & Sun, Yan-lin, 2024. "Risk characteristics and connectedness in cryptocurrency markets: New evidence from a non-linear framework," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
  • Handle: RePEc:eee:ecofin:v:69:y:2024:i:pa:s1062940823001596
    DOI: 10.1016/j.najef.2023.102036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823001596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.102036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    2. Schilling, Linda & Uhlig, Harald, 2019. "Some simple bitcoin economics," Journal of Monetary Economics, Elsevier, vol. 106(C), pages 16-26.
    3. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    4. Tian, Maoxi & El Khoury, Rim & Alshater, Muneer M., 2023. "The nonlinear and negative tail dependence and risk spillovers between foreign exchange and stock markets in emerging economies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    5. Bruno Biais & Christophe Bisière & Matthieu Bouvard & Catherine Casamatta & Albert J. Menkveld, 2023. "Equilibrium Bitcoin Pricing," Journal of Finance, American Finance Association, vol. 78(2), pages 967-1014, April.
    6. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    7. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    8. Selgin, George, 2015. "Synthetic commodity money," Journal of Financial Stability, Elsevier, vol. 17(C), pages 92-99.
    9. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    10. Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
    11. Sylvain Benoit & Jean-Edouard Colliard & Christophe Hurlin & Christophe Pérignon, 2017. "Where the Risks Lie: A Survey on Systemic Risk," Review of Finance, European Finance Association, vol. 21(1), pages 109-152.
    12. Christian M Hafner, 2020. "Testing for Bubbles in Cryptocurrencies with Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 233-249.
    13. Sarkodie, Samuel Asumadu & Ahmed, Maruf Yakubu & Owusu, Phebe Asantewaa, 2022. "COVID-19 pandemic improves market signals of cryptocurrencies–evidence from Bitcoin, Bitcoin Cash, Ethereum, and Litecoin," Finance Research Letters, Elsevier, vol. 44(C).
    14. Battiston, Stefano & Delli Gatti, Domenico & Gallegati, Mauro & Greenwald, Bruce & Stiglitz, Joseph E., 2012. "Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1121-1141.
    15. Elsayed, Ahmed H. & Gozgor, Giray & Lau, Chi Keung Marco, 2022. "Risk transmissions between bitcoin and traditional financial assets during the COVID-19 era: The role of global uncertainties," International Review of Financial Analysis, Elsevier, vol. 81(C).
    16. Amaya, Diego & Christoffersen, Peter & Jacobs, Kris & Vasquez, Aurelio, 2015. "Does realized skewness predict the cross-section of equity returns?," Journal of Financial Economics, Elsevier, vol. 118(1), pages 135-167.
    17. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    18. Koutmos, Dimitrios, 2018. "Return and volatility spillovers among cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 122-127.
    19. Geraci, Marco Valerio & Gnabo, Jean-Yves, 2018. "Measuring Interconnectedness between Financial Institutions with Bayesian Time-Varying Vector Autoregressions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 53(3), pages 1371-1390, June.
    20. Arkorful, Gideon Bruce & Chen, Haiqiang & Gu, Ming & Liu, Xiaoqun, 2023. "What can we learn from the convenience yield of Bitcoin? Evidence from the COVID-19 crisis," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 141-153.
    21. Yao, Can-Zhong & Li, Hong-Yu, 2021. "A study on the bursting point of Bitcoin based on the BSADF and LPPLS methods," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    22. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    23. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    24. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    25. Kumar, Ashish & Iqbal, Najaf & Mitra, Subrata Kumar & Kristoufek, Ladislav & Bouri, Elie, 2022. "Connectedness among major cryptocurrencies in standard times and during the COVID-19 outbreak," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    26. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2022. "Hedging the extreme risk of cryptocurrency," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    27. Chen, Meichen & Qin, Cong & Zhang, Xiaoyu, 2022. "Cryptocurrency price discrepancies under uncertainty: Evidence from COVID-19 and lockdown nexus," Journal of International Money and Finance, Elsevier, vol. 124(C).
    28. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
    29. Gandal, Neil & Hamrick, JT & Moore, Tyler & Oberman, Tali, 2018. "Price manipulation in the Bitcoin ecosystem," Journal of Monetary Economics, Elsevier, vol. 95(C), pages 86-96.
    30. Emna Mnif & Bassem Salhi & Khaireddine Mouakha & Anis Jarboui, 2022. "Investor behavior and cryptocurrency market bubbles during the COVID-19 pandemic," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 14(4), pages 491-507, June.
    31. Hasan, Mudassar & Naeem, Muhammad Abubakr & Arif, Muhammad & Yarovaya, Larisa, 2021. "Higher moment connectedness in cryptocurrency market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    32. Youssef, Mouna & Waked, Sami Sobhi, 2022. "Herding behavior in the cryptocurrency market during COVID-19 pandemic: The role of media coverage," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    33. Hinzen, Franz J. & John, Kose & Saleh, Fahad, 2022. "Bitcoin’s limited adoption problem," Journal of Financial Economics, Elsevier, vol. 144(2), pages 347-369.
    34. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    35. Joshua C. C. Chan & Eric Eisenstat, 2018. "Bayesian model comparison for time‐varying parameter VARs with stochastic volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(4), pages 509-532, June.
    36. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    37. Langlois, Hugues, 2020. "Measuring skewness premia," Journal of Financial Economics, Elsevier, vol. 135(2), pages 399-424.
    38. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    39. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    40. De Vita, Glauco & Trachanas, Emmanouil & Luo, Yun, 2018. "Revisiting the bi-directional causality between debt and growth: Evidence from linear and nonlinear tests," Journal of International Money and Finance, Elsevier, vol. 83(C), pages 55-74.
    41. Wolfgang Karl Härdle & Campbell R Harvey & Raphael C G Reule, 2020. "Understanding Cryptocurrencies," Journal of Financial Econometrics, Oxford University Press, vol. 18(2), pages 181-208.
    42. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Wanas Al-Jarrah, Idries Mohammad & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Does volatility connectedness across major cryptocurrencies behave the same at different frequencies? A portfolio risk analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 96-113.
    43. Jozef Baruník & Tomáš Křehlík, 2018. "Measuring the Frequency Dynamics of Financial Connectedness and Systemic Risk," Journal of Financial Econometrics, Oxford University Press, vol. 16(2), pages 271-296.
    44. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    45. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan & Plakandaras, Vasilios, 2018. "Dynamic connectedness of uncertainty across developed economies: A time-varying approach," Economics Letters, Elsevier, vol. 166(C), pages 63-75.
    46. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    47. Korobilis, D & Yilmaz, K, 2018. "Measuring Dynamic Connectedness with Large Bayesian VAR Models," Essex Finance Centre Working Papers 20937, University of Essex, Essex Business School.
    48. Zhang, Ping & Yin, Shiqi & Sha, Yezhou, 2023. "Global systemic risk dynamic network connectedness during the COVID-19: Evidence from nonlinear Granger causality," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    49. Zhang, Wei & Li, Yi & Xiong, Xiong & Wang, Pengfei, 2021. "Downside risk and the cross-section of cryptocurrency returns," Journal of Banking & Finance, Elsevier, vol. 133(C).
    50. Jiang, Yonghong & Lie, Jiayi & Wang, Jieru & Mu, Jinqi, 2021. "Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective," Economic Modelling, Elsevier, vol. 95(C), pages 21-34.
    51. Karau, Sören, 2023. "Monetary policy and Bitcoin," Journal of International Money and Finance, Elsevier, vol. 137(C).
    52. Vidal-Tomás, David, 2021. "Transitions in the cryptocurrency market during the COVID-19 pandemic: A network analysis," Finance Research Letters, Elsevier, vol. 43(C).
    53. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).
    54. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1043-1078, November.
    55. Lin William Cong & Ye Li & Neng Wang, 2021. "Tokenomics: Dynamic Adoption and Valuation [The demand of liquid assets with uncertain lumpy expenditures]," The Review of Financial Studies, Society for Financial Studies, vol. 34(3), pages 1105-1155.
    56. Leon, Angel & Rubio, Gonzalo & Serna, Gregorio, 2005. "Autoregresive conditional volatility, skewness and kurtosis," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(4-5), pages 599-618, September.
    57. Apergis, Nicholas, 2023. "Realized higher-order moments spillovers across cryptocurrencies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
    58. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    59. Geuder, Julian & Kinateder, Harald & Wagner, Niklas F., 2019. "Cryptocurrencies as financial bubbles: The case of Bitcoin," Finance Research Letters, Elsevier, vol. 31(C).
    60. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    61. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    62. Zhou, Dong-hai & Liu, Xiao-xing & Tang, Chun & Yang, Guang-yi, 2023. "Time-varying risk spillovers in Chinese stock market – New evidence from high-frequency data," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    63. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    64. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    65. Alla Petukhina & Simon Trimborn & Wolfgang Karl Härdle & Hermann Elendner, 2021. "Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies," Quantitative Finance, Taylor & Francis Journals, vol. 21(11), pages 1825-1853, November.
    66. Dwyer, Gerald P., 2015. "The economics of Bitcoin and similar private digital currencies," Journal of Financial Stability, Elsevier, vol. 17(C), pages 81-91.
    67. Nitithumbundit, Thanakorn & Chan, Jennifer S.K., 2022. "Covid-19 impact on Cryptocurrencies market using Multivariate Time Series Models," The Quarterly Review of Economics and Finance, Elsevier, vol. 86(C), pages 365-375.
    68. Alessandra Cretarola & Gianna Figà-Talamanca, 2021. "Detecting bubbles in Bitcoin price dynamics via market exuberance," Annals of Operations Research, Springer, vol. 299(1), pages 459-479, April.
    69. Fry, John & Cheah, Eng-Tuck, 2016. "Negative bubbles and shocks in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 343-352.
    70. Wolfgang Karl Hardle & Campbell R. Harvey & Raphael C. G. Reule, 2020. "Editorial: Understanding Cryptocurrencies," Papers 2007.14702, arXiv.org.
    71. Ji, Qiang & Bouri, Elie & Lau, Chi Keung Marco & Roubaud, David, 2019. "Dynamic connectedness and integration in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 257-272.
    72. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    73. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    74. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    75. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    2. Andrada-Félix, Julián & Fernandez-Perez, Adrian & Sosvilla-Rivero, Simón, 2020. "Distant or close cousins: Connectedness between cryptocurrencies and traditional currencies volatilities," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 67(C).
    3. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    4. Jinxin Cui & Aktham Maghyereh, 2022. "Time–frequency co-movement and risk connectedness among cryptocurrencies: new evidence from the higher-order moments before and during the COVID-19 pandemic," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-56, December.
    5. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    6. De Pace, Pierangelo & Rao, Jayant, 2023. "Comovement and instability in cryptocurrency markets," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 173-200.
    7. Pattnaik, Debidutta & Hassan, M. Kabir & Dsouza, Arun & Tiwari, Aviral & Devji, Shridev, 2023. "Ex-post facto analysis of cryptocurrency literature over a decade using bibliometric technique," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    8. Abubakr Naeem, Muhammad & Iqbal, Najaf & Lucey, Brian M. & Karim, Sitara, 2022. "Good versus bad information transmission in the cryptocurrency market: Evidence from high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    9. Chen, Bin-xia & Sun, Yan-lin, 2024. "Financial market connectedness between the U.S. and China: A new perspective based on non-linear causality networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    10. BRIK, Hatem & El OUAKDI, Jihene & FTITI, Zied, 2022. "Roles of stable versus nonstable cryptocurrencies in Bitcoin market dynamics," Research in International Business and Finance, Elsevier, vol. 62(C).
    11. Hu, Yang & Hou, Yang (Greg) & Oxley, Les & Corbet, Shaen, 2021. "Does blockchain patent-development influence Bitcoin risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 70(C).
    12. Charfeddine, Lanouar & Benlagha, Noureddine & Khediri, Karim Ben, 2022. "An intra-cryptocurrency analysis of volatility connectedness and its determinants: Evidence from mining coins, non-mining coins and tokens," Research in International Business and Finance, Elsevier, vol. 62(C).
    13. Shaen Corbet & Les Oxley, 2023. "Investigating the Academic Response to Cryptocurrencies: Insights from Research Diversification as Separated by Journal Ranking," Review of Corporate Finance, now publishers, vol. 3(4), pages 487-528, September.
    14. Wang, Xuetong & Fang, Fang & Ma, Shiqun & Xiang, Lijin & Xiao, Zumian, 2024. "Dynamic volatility spillover among cryptocurrencies and energy markets: An empirical analysis based on a multilevel complex network," The North American Journal of Economics and Finance, Elsevier, vol. 69(PA).
    15. Christian M. Hafner & Sabrine Majeri, 2022. "Analysis of cryptocurrency connectedness based on network to transaction volume ratios," Digital Finance, Springer, vol. 4(2), pages 187-216, September.
    16. Bojaj, Martin M. & Muhadinovic, Milica & Bracanovic, Andrej & Mihailovic, Andrej & Radulovic, Mladen & Jolicic, Ivan & Milosevic, Igor & Milacic, Veselin, 2022. "Forecasting macroeconomic effects of stablecoin adoption: A Bayesian approach," Economic Modelling, Elsevier, vol. 109(C).
    17. Li, Yi & Urquhart, Andrew & Wang, Pengfei & Zhang, Wei, 2021. "MAX momentum in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 77(C).
    18. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    19. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    20. Muhammad Owais Qarni & Saiqb Gulzar, 2021. "Portfolio diversification benefits of alternative currency investment in Bitcoin and foreign exchange markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-37, December.

    More about this item

    Keywords

    Cryptocurrency market; GARCHSK model; TVP-VAR model; Higher moment connectedness; Non-linear Granger causality;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:69:y:2024:i:pa:s1062940823001596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.