IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.05237.html
   My bibliography  Save this paper

Sustainable Investing and the Cross-Section of Returns and Maximum Drawdown

Author

Listed:
  • Lisa R. Goldberg
  • Saad Mouti

Abstract

We use supervised learning to identify factors that predict the cross-section of returns and maximum drawdown for stocks in the US equity market. Our data run from January 1970 to December 2019 and our analysis includes ordinary least squares, penalized linear regressions, tree-based models, and neural networks. We find that the most important predictors tended to be consistent across models, and that non-linear models had better predictive power than linear models. Predictive power was higher in calm periods than in stressed periods. Environmental, social, and governance indicators marginally impacted the predictive power of non-linear models in our data, despite their negative correlation with maximum drawdown and positive correlation with returns. Upon exploring whether ESG variables are captured by some models, we find that ESG data contribute to the prediction nonetheless.

Suggested Citation

  • Lisa R. Goldberg & Saad Mouti, 2019. "Sustainable Investing and the Cross-Section of Returns and Maximum Drawdown," Papers 1905.05237, arXiv.org, revised Dec 2023.
  • Handle: RePEc:arx:papers:1905.05237
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.05237
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    2. Vozlyublennaia, Nadia, 2013. "Do firm characteristics matter for the dynamics of idiosyncratic risk?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 27(C), pages 35-46.
    3. Herskovic, Bernard & Kelly, Bryan & Lustig, Hanno & Van Nieuwerburgh, Stijn, 2016. "The common factor in idiosyncratic volatility: Quantitative asset pricing implications," Journal of Financial Economics, Elsevier, vol. 119(2), pages 249-283.
    4. Stephen Brammer & Chris Brooks & Stephen Pavelin, 2006. "Corporate Social Performance and Stock Returns: UK Evidence from Disaggregate Measures," Financial Management, Financial Management Association International, vol. 35(3), pages 97-116, September.
    5. Mohammed Benlemlih & Amama Shaukat & Yan Qiu & Grzegorz Trojanowski, 2018. "Environmental and Social Disclosures and Firm Risk," Journal of Business Ethics, Springer, vol. 152(3), pages 613-626, October.
    6. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    7. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    8. William F. Sharpe, 1964. "Capital Asset Prices: A Theory Of Market Equilibrium Under Conditions Of Risk," Journal of Finance, American Finance Association, vol. 19(3), pages 425-442, September.
    9. Eugene F. Fama & Kenneth R. French, 2008. "Dissecting Anomalies," Journal of Finance, American Finance Association, vol. 63(4), pages 1653-1678, August.
    10. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493, arXiv.org, revised Sep 2016.
    11. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    12. Chollet, Pierre & Sandwidi, Blaise W., 2018. "CSR engagement and financial risk: A virtuous circle? International evidence," Global Finance Journal, Elsevier, vol. 38(C), pages 65-81.
    13. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    14. Hong, Harrison & Kacperczyk, Marcin, 2009. "The price of sin: The effects of social norms on markets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 15-36, July.
    15. Lin L. & Hedayat A. S. & Sinha B. & Yang M., 2002. "Statistical Methods in Assessing Agreement: Models, Issues, and Tools," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 257-270, March.
    16. Hoje Jo & Haejung Na, 2012. "Does CSR Reduce Firm Risk? Evidence from Controversial Industry Sectors," Journal of Business Ethics, Springer, vol. 110(4), pages 441-456, November.
    17. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    18. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    19. Renneboog, Luc & Ter Horst, Jenke & Zhang, Chendi, 2008. "Socially responsible investments: Institutional aspects, performance, and investor behavior," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1723-1742, September.
    20. A. Chekhlov & S. Uryasev & M. Zabarankin, 2004. "Portfolio Optimization With Drawdown Constraints," World Scientific Book Chapters, in: Panos M Pardalos & Athanasios Migdalas & George Baourakis (ed.), Supply Chain And Finance, chapter 13, pages 209-228, World Scientific Publishing Co. Pte. Ltd..
    21. Pierre Chollet & Blaise Sandwidi, 2018. "CSR engagement and financial risk: A virtuous circle? International evidence," Post-Print hal-02048716, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan, M. Kabir & Chowdhury, Md Iftekhar Hasan & Balli, Faruk & Hasan, Rashedul, 2022. "A note on COVID-19 instigated maximum drawdown in Islamic markets versus conventional counterparts," Finance Research Letters, Elsevier, vol. 46(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becchetti, Leonardo & Ciciretti, Rocco & Dalò, Ambrogio, 2018. "Fishing the Corporate Social Responsibility risk factors," Journal of Financial Stability, Elsevier, vol. 37(C), pages 25-48.
    2. Kristoffer Pons Bertelsen, 2022. "The Prior Adaptive Group Lasso and the Factor Zoo," CREATES Research Papers 2022-05, Department of Economics and Business Economics, Aarhus University.
    3. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    4. Sebastian Lobe & Christian Walkshäusl, 2016. "Vice versus virtue investing around the world," Review of Managerial Science, Springer, vol. 10(2), pages 303-344, March.
    5. Vitor Azevedo & Christopher Hoegner, 2023. "Enhancing stock market anomalies with machine learning," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 195-230, January.
    6. DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
    7. Jedynak Tomasz, 2017. "Is it Worth Being Good? – The Efficiency and Risk of Socially Responsible Investing in Light of Various Empirical Studies," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 13(3), pages 1-14, September.
    8. Li Cai & Jinhua Cui & Hoje Jo, 2016. "Corporate Environmental Responsibility and Firm Risk," Journal of Business Ethics, Springer, vol. 139(3), pages 563-594, December.
    9. Cakici, Nusret & Zaremba, Adam, 2021. "Liquidity and the cross-section of international stock returns," Journal of Banking & Finance, Elsevier, vol. 127(C).
    10. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    11. Hoang, Khoa & Huang, Ronghong & Truong, Helen, 2023. "Resurrecting the market factor: A case of data mining across international markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    12. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    13. José Luis Miralles-Quirós & María Mar Miralles-Quirós, 2020. "Who Knocks on the Door of Portfolio Performance Heaven: Sinner or Saint Investors?," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    14. Kim, Jang Ho & Han, Jiwoon & Kang, Taehyeon & Fabozzi, Frank J., 2023. "A machine learning approach for comparing the largest firm effect," Emerging Markets Review, Elsevier, vol. 54(C).
    15. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    16. Giovanni Catello Landi & Francesca Iandolo & Antonio Renzi & Andrea Rey, 2022. "Embedding sustainability in risk management: The impact of environmental, social, and governance ratings on corporate financial risk," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(4), pages 1096-1107, July.
    17. Paola Brighi & Antonio Carlo Francesco Della Bina & Valeria Venturelli, 2022. "Do ESG Investments Mitigate ESG Controversies? Evidence From International Data," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0084, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Raymond C. W. Leung & Yu-Man Tam, 2021. "Statistical Arbitrage Risk Premium by Machine Learning," Papers 2103.09987, arXiv.org.
    20. Söhnke M. Bartram & Harald Lohre & Peter F. Pope & Ananthalakshmi Ranganathan, 2021. "Navigating the factor zoo around the world: an institutional investor perspective," Journal of Business Economics, Springer, vol. 91(5), pages 655-703, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.05237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.