IDEAS home Printed from https://ideas.repec.org/a/eee/ijrema/v41y2024i4p632-647.html
   My bibliography  Save this article

Enhanced sales forecasting model using textual search data: Fusing dynamics with big data

Author

Listed:
  • Borah, Abhishek
  • Rutz, Oliver

Abstract

Forecasting sales is an essential marketing function, and, for most businesses, sales are driven by own and competitive activities. Most firms use their own marketing efforts or a selection of their competitor’s marketing efforts for forecasting sales. Due to data availability limitations, data on the full set of competitors are rarely used when forecasting sales. The emergence of online search data provides access to a novel data source on own as well as never-before observed competitive activities. We propose a novel regularized dynamic forecasting model utilizing all available competitive search data in a market vs. constructing ad-hoc and potentially subjective smaller competitive sets. Our model addresses the inherent statistical issue that arises when including a large number of competitive effects and parsimoniously utilizes all competitive data. We demonstrate our model using data from the US automobile industry over a twelve-year period and forecast car-model sales for 14 exemplary car-models utilizing multiple search measures for all 374 potential competitive car-models. We show that our model fits and forecasts sales better than models not leveraging the full competitive search data, e.g., using subjective sets of relevant competitors or narrowly defined category competitors. We also find that market research done via novel large-language models (also called LLMs) to obtain a narrower set of competitors does not outperform our proposed model that includes the full set of competitors.

Suggested Citation

  • Borah, Abhishek & Rutz, Oliver, 2024. "Enhanced sales forecasting model using textual search data: Fusing dynamics with big data," International Journal of Research in Marketing, Elsevier, vol. 41(4), pages 632-647.
  • Handle: RePEc:eee:ijrema:v:41:y:2024:i:4:p:632-647
    DOI: 10.1016/j.ijresmar.2024.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167811624000454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijresmar.2024.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ijrema:v:41:y:2024:i:4:p:632-647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/international-journal-of-research-in-marketing/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.