IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i1p198-214.html
   My bibliography  Save this article

A fused large language model for predicting startup success

Author

Listed:
  • Maarouf, Abdurahman
  • Feuerriegel, Stefan
  • Pröllochs, Nicolas

Abstract

Investors are continuously seeking profitable investment opportunities in startups and, hence, for effective decision-making, need to predict a startup’s probability of success. Nowadays, investors can use not only various fundamental information about a startup (e.g., the age of the startup, the number of founders, and the business sector) but also textual description of a startup’s innovation and business model, which is widely available through online venture capital (VC) platforms such as Crunchbase. To support the decision-making of investors, we develop a machine learning approach with the aim of locating successful startups on VC platforms. Specifically, we develop, train, and evaluate a tailored, fused large language model to predict startup success. Thereby, we assess to what extent self-descriptions on VC platforms are predictive of startup success. Using 20,172 online profiles from Crunchbase, we find that our fused large language model can predict startup success, with textual self-descriptions being responsible for a significant part of the predictive power. Our work provides a decision support tool for investors to find profitable investment opportunities.

Suggested Citation

  • Maarouf, Abdurahman & Feuerriegel, Stefan & Pröllochs, Nicolas, 2025. "A fused large language model for predicting startup success," European Journal of Operational Research, Elsevier, vol. 322(1), pages 198-214.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:1:p:198-214
    DOI: 10.1016/j.ejor.2024.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724007136
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julian Senoner & Bernhard Kratzwald & Milan Kuzmanovic & Torbjørn H. Netland & Stefan Feuerriegel, 2023. "Addressing distributional shifts in operations management: The case of order fulfillment in customized production," Production and Operations Management, Production and Operations Management Society, vol. 32(10), pages 3022-3042, October.
    2. Maxime C. Cohen, 2018. "Big Data and Service Operations," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1709-1723, September.
    3. Nanda, Ramana & Rhodes-Kropf, Matthew, 2013. "Investment cycles and startup innovation," Journal of Financial Economics, Elsevier, vol. 110(2), pages 403-418.
    4. Maldonado, Sebastián & Pérez, Juan & Bravo, Cristián, 2017. "Cost-based feature selection for Support Vector Machines: An application in credit scoring," European Journal of Operational Research, Elsevier, vol. 261(2), pages 656-665.
    5. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    6. repec:diw:diwwpp:dp1732 is not listed on IDEAS
    7. Parhankangas, Annaleena & Ehrlich, Michael, 2014. "How entrepreneurs seduce business angels: An impression management approach," Journal of Business Venturing, Elsevier, vol. 29(4), pages 543-564.
    8. Konon, Alexander & Fritsch, Michael & Kritikos, Alexander S., 2018. "Business cycles and start-ups across industries: An empirical analysis of German regions," Journal of Business Venturing, Elsevier, vol. 33(6), pages 742-761.
    9. Stevenson, Matthew & Mues, Christophe & Bravo, Cristián, 2021. "The value of text for small business default prediction: A Deep Learning approach," European Journal of Operational Research, Elsevier, vol. 295(2), pages 758-771.
    10. Geuens, Stijn & Coussement, Kristof & De Bock, Koen W., 2018. "A framework for configuring collaborative filtering-based recommendations derived from purchase data," European Journal of Operational Research, Elsevier, vol. 265(1), pages 208-218.
    11. Haupt, Johannes & Bender, Benedict & Fabian, Benjamin & Lessmann, Stefan, 2018. "Robust identification of email tracking: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 271(1), pages 341-356.
    12. McKenzie, David & Sansone, Dario, 2017. "Man vs. Machine in Predicting Successful Entrepreneurs: Evidence from a Business Plan Competition in Nigeria," CEPR Discussion Papers 12523, C.E.P.R. Discussion Papers.
    13. Baum, Joel A. C. & Silverman, Brian S., 2004. "Picking winners or building them? Alliance, intellectual, and human capital as selection criteria in venture financing and performance of biotechnology startups," Journal of Business Venturing, Elsevier, vol. 19(3), pages 411-436, May.
    14. Philipp Borchert & Kristof Coussement & Arno de Caigny & Jochen de Weerdt, 2023. "Extending business failure prediction models with textual website content using deep learning," Post-Print hal-03976762, HAL.
    15. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    16. Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
    17. Mann, Ronald J. & Sager, Thomas W., 2007. "Patents, venture capital, and software start-ups," Research Policy, Elsevier, vol. 36(2), pages 193-208, March.
    18. Julian Senoner & Torbjørn Netland & Stefan Feuerriegel, 2022. "Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing," Management Science, INFORMS, vol. 68(8), pages 5704-5723, August.
    19. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    20. Nahata, Rajarishi, 2008. "Venture capital reputation and investment performance," Journal of Financial Economics, Elsevier, vol. 90(2), pages 127-151, November.
    21. Deepak Hegde & Justin Tumlinson, 2014. "Does Social Proximity Enhance Business Partnerships? Theory and Evidence from Ethnicity's Role in U.S. Venture Capital," Management Science, INFORMS, vol. 60(9), pages 2355-2380, September.
    22. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    23. Arno de Caigny & Kristof Coussement & Koen W. de Bock, 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," Post-Print hal-01741661, HAL.
    24. Kaiser, Ulrich & Kuhn, Johan M., 2020. "The value of publicly available, textual and non-textual information for startup performance prediction," Journal of Business Venturing Insights, Elsevier, vol. 14(C).
    25. Nikita Kozodoi & Johannes Jacob & Stefan Lessmann, 2021. "Fairness in Credit Scoring: Assessment, Implementation and Profit Implications," Papers 2103.01907, arXiv.org, revised Jun 2022.
    26. Marco Gelderen & Roy Thurik & Niels Bosma, 2006. "Success and Risk Factors in the Pre-Startup Phase," Small Business Economics, Springer, vol. 26(4), pages 319-335, May.
    27. Verbraken, Thomas & Bravo, Cristián & Weber, Richard & Baesens, Bart, 2014. "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research, Elsevier, vol. 238(2), pages 505-513.
    28. repec:nas:journl:v:115:y:2018:p:e3635-e3644 is not listed on IDEAS
    29. De Bock, Koen W. & Coussement, Kristof & Lessmann, Stefan, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 612-630.
    30. Koen W. de Bock & Kristof Coussement & Stefan Lessmann, 2020. "Cost-sensitive business failure prediction when misclassification costs are uncertain: A heterogeneous ensemble selection approach," Post-Print hal-02863245, HAL.
    31. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    32. Kaloyan Haralampiev & Boyan Yankov & Petko Ruskov, 2014. "Models and Tools for Technology Start-Up Companies Success Analysis," Economic Alternatives, University of National and World Economy, Sofia, Bulgaria, issue 3, pages 15-24, October.
    33. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    34. Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
    35. Erin L. Scott & Pian Shu & Roman M. Lubynsky, 2020. "Entrepreneurial Uncertainty and Expert Evaluation: An Empirical Analysis," Management Science, INFORMS, vol. 66(3), pages 1278-1299, March.
    36. Maria De‐Arteaga & Stefan Feuerriegel & Maytal Saar‐Tsechansky, 2022. "Algorithmic fairness in business analytics: Directions for research and practice," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3749-3770, October.
    37. Steven N. Kaplan & Josh Lerner, 2016. "Venture Capital Data: Opportunities and Challenges," NBER Chapters, in: Measuring Entrepreneurial Businesses: Current Knowledge and Challenges, pages 413-431, National Bureau of Economic Research, Inc.
    38. Stijn Geuens & Kristof Coussement & Koen W. de Bock, 2018. "A framework for configuring collaborative filtering-based recommendations derived from purchase data," Post-Print hal-01662029, HAL.
    39. Srinivasan Ragothaman & Bijayananda Naik & Kumoli Ramakrishnan, 2003. "Predicting Corporate Acquisitions: An Application of Uncertain Reasoning Using Rule Induction," Information Systems Frontiers, Springer, vol. 5(4), pages 401-412, December.
    40. Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
    41. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    42. Raymond Yiu Keung Lau & Wenping Zhang & Wei Xu, 2018. "Parallel Aspect‐Oriented Sentiment Analysis for Sales Forecasting with Big Data," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1775-1794, October.
    43. John Sibley Butler & Rajiv Garg & Bryan Stephens, 2020. "Social Networks, Funding, and Regional Advantages in Technology Entrepreneurship: An Empirical Analysis," Information Systems Research, INFORMS, vol. 31(1), pages 198-216, March.
    44. P. Holmes & A. Hunt & I. Stone, 2010. "An analysis of new firm survival using a hazard function," Applied Economics, Taylor & Francis Journals, vol. 42(2), pages 185-195.
    45. Chang, Sea Jin, 2004. "Venture capital financing, strategic alliances, and the initial public offerings of Internet startups," Journal of Business Venturing, Elsevier, vol. 19(5), pages 721-741, September.
    46. Malte Toetzke & Nicolas Banholzer & Stefan Feuerriegel, 2022. "Monitoring global development aid with machine learning," Nature Sustainability, Nature, vol. 5(6), pages 533-541, June.
    47. Kozodoi, Nikita & Jacob, Johannes & Lessmann, Stefan, 2022. "Fairness in credit scoring: Assessment, implementation and profit implications," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1083-1094.
    48. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    49. De Caigny, Arno & Coussement, Kristof & De Bock, Koen W., 2018. "A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees," European Journal of Operational Research, Elsevier, vol. 269(2), pages 760-772.
    50. Annamaria Conti & Stuart J. H. Graham, 2020. "Valuable Choices: Prominent Venture Capitalists’ Influence on Startup CEO Replacements," Management Science, INFORMS, vol. 66(3), pages 1325-1350, March.
    51. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    52. Johannes Jakubik & Stefan Feuerriegel, 2022. "Data‐driven allocation of development aid toward sustainable development goals: Evidence from HIV/AIDS," Production and Operations Management, Production and Operations Management Society, vol. 31(6), pages 2739-2756, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Kusetogullari & Huseyin Kusetogullari & Martin Andersson & Tony Gorschek, 2025. "GenAI in Entrepreneurship: a systematic review of generative artificial intelligence in entrepreneurship research: current issues and future directions," Papers 2505.05523, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    2. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    3. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    4. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    5. Julian Senoner & Bernhard Kratzwald & Milan Kuzmanovic & Torbjørn H. Netland & Stefan Feuerriegel, 2023. "Addressing distributional shifts in operations management: The case of order fulfillment in customized production," Production and Operations Management, Production and Operations Management Society, vol. 32(10), pages 3022-3042, October.
    6. Dafei Yin & Jing Li & Gaosheng Wu, 2021. "Solving the Data Sparsity Problem in Predicting the Success of the Startups with Machine Learning Methods," Papers 2112.07985, arXiv.org.
    7. Borchert, Philipp & Coussement, Kristof & De Caigny, Arno & De Weerdt, Jochen, 2023. "Extending business failure prediction models with textual website content using deep learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 348-357.
    8. K. Coussement & K. W. Bock & S. Geuens, 2022. "A decision-analytic framework for interpretable recommendation systems with multiple input data sources: a case study for a European e-tailer," Annals of Operations Research, Springer, vol. 315(2), pages 671-694, August.
    9. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
    10. Matthias Bogaert & Lex Delaere, 2023. "Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art," Mathematics, MDPI, vol. 11(5), pages 1-28, February.
    11. Vairetti, Carla & Aránguiz, Ignacio & Maldonado, Sebastián & Karmy, Juan Pablo & Leal, Alonso, 2024. "Analytics-driven complaint prioritisation via deep learning and multicriteria decision-making," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1108-1118.
    12. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    13. Sobrie, Léon & Verschelde, Marijn & Roets, Bart, 2024. "Explainable real-time predictive analytics on employee workload in digital railway control rooms," European Journal of Operational Research, Elsevier, vol. 317(2), pages 437-448.
    14. Ronald Setty & Yuval Elovici & Dafna Schwartz, 2024. "Cost‐sensitive machine learning to support startup investment decisions," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(1), March.
    15. Petra P. Šimović & Claire Y. T. Chen & Edward W. Sun, 2023. "Classifying the Variety of Customers’ Online Engagement for Churn Prediction with a Mixed-Penalty Logistic Regression," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 451-485, January.
    16. Zha, Yong & Wang, Yuting & Li, Quan & Yao, Wenying, 2022. "Credit offering strategy and dynamic pricing in the presence of consumer strategic behavior," European Journal of Operational Research, Elsevier, vol. 303(2), pages 753-766.
    17. Petra Posedel v{S}imovi'c & Davor Horvatic & Edward W. Sun, 2021. "Classifying variety of customer's online engagement for churn prediction with mixed-penalty logistic regression," Papers 2105.07671, arXiv.org, revised Jul 2021.
    18. Liu, Wanan & Fan, Hong & Xia, Meng, 2023. "Tree-based heterogeneous cascade ensemble model for credit scoring," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1593-1614.
    19. Fitzpatrick, Trevor & Mues, Christophe, 2021. "How can lenders prosper? Comparing machine learning approaches to identify profitable peer-to-peer loan investments," European Journal of Operational Research, Elsevier, vol. 294(2), pages 711-722.
    20. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:1:p:198-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.