IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i8p5704-5723.html
   My bibliography  Save this article

Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing

Author

Listed:
  • Julian Senoner

    (Department of Management, Technology, and Economics, ETH Zurich, 8092 Zurich, Switzerland)

  • Torbjørn Netland

    (Department of Management, Technology, and Economics, ETH Zurich, 8092 Zurich, Switzerland)

  • Stefan Feuerriegel

    (Department of Management, Technology, and Economics, ETH Zurich, 8092 Zurich, Switzerland)

Abstract

We develop a data-driven decision model to improve process quality in manufacturing. A challenge for traditional methods in quality management is to handle high-dimensional and nonlinear manufacturing data. We address this challenge by adapting explainable artificial intelligence to the context of quality management. Specifically, we propose the use of nonlinear modeling with Shapley additive explanations to infer how a set of production parameters and the process quality of a manufacturing system are related. Thereby, we contribute a measure of process importance based on which manufacturers can prioritize processes for quality improvement. Grounded in quality management theory, our decision model selects improvement actions that target the sources of quality variation. The decision model is validated in a real-world application at a leading manufacturer of high-power semiconductors. Seeking to improve production yield, we apply our decision model to select improvement actions for a transistor chip product. We then conduct a field experiment to confirm the effectiveness of the improvement actions. Compared with the average yield in our sample, the experiment returns a reduction in yield loss of 21.7%. Furthermore, we report on results from a postexperimental rollout of the decision model, which also resulted in significant yield improvements. We demonstrate the operational value of explainable artificial intelligence by showing that critical drivers of process quality can go undiscovered by the use of traditional methods.

Suggested Citation

  • Julian Senoner & Torbjørn Netland & Stefan Feuerriegel, 2022. "Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing," Management Science, INFORMS, vol. 68(8), pages 5704-5723, August.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:8:p:5704-5723
    DOI: 10.1287/mnsc.2021.4190
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4190
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    2. Paul F. Zantek & Gordon P. Wright & Robert D. Plante, 2002. "Process and Product Improvement in Manufacturing Systems with Correlated Stages," Management Science, INFORMS, vol. 48(5), pages 591-606, May.
    3. Charles J. Corbett, 2018. "How Sustainable Is Big Data?," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1685-1695, September.
    4. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    5. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    2. Maria De‐Arteaga & Stefan Feuerriegel & Maytal Saar‐Tsechansky, 2022. "Algorithmic fairness in business analytics: Directions for research and practice," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3749-3770, October.
    3. Borgonovo, Emanuele & Plischke, Elmar & Rabitti, Giovanni, 2024. "The many Shapley values for explainable artificial intelligence: A sensitivity analysis perspective," European Journal of Operational Research, Elsevier, vol. 318(3), pages 911-926.
    4. Kraus, Mathias & Tschernutter, Daniel & Weinzierl, Sven & Zschech, Patrick, 2024. "Interpretable generalized additive neural networks," European Journal of Operational Research, Elsevier, vol. 317(2), pages 303-316.
    5. Julian Senoner & Bernhard Kratzwald & Milan Kuzmanovic & Torbjørn H. Netland & Stefan Feuerriegel, 2023. "Addressing distributional shifts in operations management: The case of order fulfillment in customized production," Production and Operations Management, Production and Operations Management Society, vol. 32(10), pages 3022-3042, October.
    6. Philipp Schwarz & Oliver Schacht & Sven Klaassen & Daniel Grunbaum & Sebastian Imhof & Martin Spindler, 2024. "Management Decisions in Manufacturing using Causal Machine Learning -- To Rework, or not to Rework?," Papers 2406.11308, arXiv.org.
    7. Stefan Feuerriegel & Jochen Hartmann & Christian Janiesch & Patrick Zschech, 2024. "Generative AI," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 66(1), pages 111-126, February.
    8. Chien-Chih Wang & Yi-Ying Yang, 2023. "A Machine Learning Approach for Improving Wafer Acceptance Testing Based on an Analysis of Station and Equipment Combinations," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    9. Giorgio Scarton & Marco Formentini & Pietro Romano, 2025. "Automating quality control through an expert system," Electronic Markets, Springer;IIM University of St. Gallen, vol. 35(1), pages 1-19, December.
    10. Sandra Zilker & Sven Weinzierl & Mathias Kraus & Patrick Zschech & Martin Matzner, 2024. "A machine learning framework for interpretable predictions in patient pathways: The case of predicting ICU admission for patients with symptoms of sepsis," Health Care Management Science, Springer, vol. 27(2), pages 136-167, June.
    11. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    12. Notz, Pascal M. & Pibernik, Richard, 2024. "Explainable subgradient tree boosting for prescriptive analytics in operations management," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1119-1133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva Labro & Mark Lang & Jim Omartian, 2019. "Predictive Analytics and Organizational Architecture: Plant-Level Evidence from Census Data," Working Papers 19-02, Center for Economic Studies, U.S. Census Bureau.
    2. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    3. Chaohong Na & Xue Chen & Xiaojun Li & Yuting Li & Xiaolan Wang, 2022. "Digital Transformation of Value Chains and CSR Performance," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    4. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
    5. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
    6. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    7. Julian Senoner & Bernhard Kratzwald & Milan Kuzmanovic & Torbjørn H. Netland & Stefan Feuerriegel, 2023. "Addressing distributional shifts in operations management: The case of order fulfillment in customized production," Production and Operations Management, Production and Operations Management Society, vol. 32(10), pages 3022-3042, October.
    8. Kyungmin Park & Stephanie Lee & Shahryar Doosti & Yong Tan, 2023. "Provision of helpful review videos: Effects of video characteristics on perceived helpfulness," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2031-2048, July.
    9. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    10. Anton Ivanov & Zhasmina Tacheva & Abdullatif Alzaidan & Sebastian Souyris & Albert C. England, 2023. "Informational value of visual nudges during crises: Improving public health outcomes through social media engagement amid COVID‐19," Production and Operations Management, Production and Operations Management Society, vol. 32(8), pages 2400-2419, August.
    11. Liangfei Qiu & Yili (Kevin) Hong & Andrew Whinston, 2022. "Special Issue of Production and Operations Management “Social Technologies in Operations”," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 868-869, February.
    12. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    13. Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).
    14. Maximilian Zarte & Agnes Pechmann & Isabel L. Nunes, 2022. "Problems, Needs, and Challenges of a Sustainability-Based Production Planning," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    15. Bharadwaj Kadiyala & Özalp Özer & A. Serdar Şimşek, 2021. "Data‐Driven Approaches to Targeting Promotion E‐mails: The Case of Delayed Incentives," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 766-782, March.
    16. Victor Martínez‐de‐Albéniz & Arnau Planas & Stefano Nasini, 2020. "Using Clickstream Data to Improve Flash Sales Effectiveness," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2508-2531, November.
    17. Lu, Shixiang & Xu, Qifa & Jiang, Cuixia & Liu, Yezheng & Kusiak, Andrew, 2022. "Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network," Energy, Elsevier, vol. 242(C).
    18. Wang, Di & He, Bin & Hu, Zhimu, 2024. "Financial technology and firm productivity: Evidence from Chinese listed enterprises," Finance Research Letters, Elsevier, vol. 63(C).
    19. Debjit Roy & Eirini Spiliotopoulou & Jelle de Vries, 2022. "Restaurant analytics: Emerging practice and research opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3687-3709, October.
    20. Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:8:p:5704-5723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.