IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i8p5704-5723.html
   My bibliography  Save this article

Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing

Author

Listed:
  • Julian Senoner

    (Department of Management, Technology, and Economics, ETH Zurich, 8092 Zurich, Switzerland)

  • Torbjørn Netland

    (Department of Management, Technology, and Economics, ETH Zurich, 8092 Zurich, Switzerland)

  • Stefan Feuerriegel

    (Department of Management, Technology, and Economics, ETH Zurich, 8092 Zurich, Switzerland)

Abstract

We develop a data-driven decision model to improve process quality in manufacturing. A challenge for traditional methods in quality management is to handle high-dimensional and nonlinear manufacturing data. We address this challenge by adapting explainable artificial intelligence to the context of quality management. Specifically, we propose the use of nonlinear modeling with Shapley additive explanations to infer how a set of production parameters and the process quality of a manufacturing system are related. Thereby, we contribute a measure of process importance based on which manufacturers can prioritize processes for quality improvement. Grounded in quality management theory, our decision model selects improvement actions that target the sources of quality variation. The decision model is validated in a real-world application at a leading manufacturer of high-power semiconductors. Seeking to improve production yield, we apply our decision model to select improvement actions for a transistor chip product. We then conduct a field experiment to confirm the effectiveness of the improvement actions. Compared with the average yield in our sample, the experiment returns a reduction in yield loss of 21.7%. Furthermore, we report on results from a postexperimental rollout of the decision model, which also resulted in significant yield improvements. We demonstrate the operational value of explainable artificial intelligence by showing that critical drivers of process quality can go undiscovered by the use of traditional methods.

Suggested Citation

  • Julian Senoner & Torbjørn Netland & Stefan Feuerriegel, 2022. "Using Explainable Artificial Intelligence to Improve Process Quality: Evidence from Semiconductor Manufacturing," Management Science, INFORMS, vol. 68(8), pages 5704-5723, August.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:8:p:5704-5723
    DOI: 10.1287/mnsc.2021.4190
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4190
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4190?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles J. Corbett, 2018. "How Sustainable Is Big Data?," Production and Operations Management, Production and Operations Management Society, vol. 27(9), pages 1685-1695, September.
    2. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    3. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    4. Paul F. Zantek & Gordon P. Wright & Robert D. Plante, 2002. "Process and Product Improvement in Manufacturing Systems with Correlated Stages," Management Science, INFORMS, vol. 48(5), pages 591-606, May.
    5. Andrew Kusiak, 2017. "Smart manufacturing must embrace big data," Nature, Nature, vol. 544(7648), pages 23-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    2. Notz, Pascal M. & Pibernik, Richard, 2024. "Explainable subgradient tree boosting for prescriptive analytics in operations management," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1119-1133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva Labro & Mark Lang & Jim Omartian, 2019. "Predictive Analytics and Organizational Architecture: Plant-Level Evidence from Census Data," Working Papers 19-02, Center for Economic Studies, U.S. Census Bureau.
    2. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    3. Kyungmin Park & Stephanie Lee & Shahryar Doosti & Yong Tan, 2023. "Provision of helpful review videos: Effects of video characteristics on perceived helpfulness," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2031-2048, July.
    4. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    5. Chaohong Na & Xue Chen & Xiaojun Li & Yuting Li & Xiaolan Wang, 2022. "Digital Transformation of Value Chains and CSR Performance," Sustainability, MDPI, vol. 14(16), pages 1-24, August.
    6. Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
    7. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
    8. Bera, Sasadhar & Mukherjee, Indrajit, 2016. "A multistage and multiple response optimization approach for serial manufacturing system," European Journal of Operational Research, Elsevier, vol. 248(2), pages 444-452.
    9. Chou, Ping & Chuang, Howard Hao-Chun & Chou, Yen-Chun & Liang, Ting-Peng, 2022. "Predictive analytics for customer repurchase: Interdisciplinary integration of buy till you die modeling and machine learning," European Journal of Operational Research, Elsevier, vol. 296(2), pages 635-651.
    10. Zhou, Jing & Liu, Yu & Liang, Decui & Tang, Maochun, 2023. "A new risk analysis approach to seek best production action during new product introduction," International Journal of Production Economics, Elsevier, vol. 262(C).
    11. Lei Wang & Ram Gopal & Ramesh Shankar & Joseph Pancras, 2022. "Forecasting venue popularity on location‐based services using interpretable machine learning," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2773-2788, July.
    12. Arpan Kumar Kar & P. S. Varsha & Shivakami Rajan, 2023. "Unravelling the Impact of Generative Artificial Intelligence (GAI) in Industrial Applications: A Review of Scientific and Grey Literature," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 24(4), pages 659-689, December.
    13. Magdalena Rusch & Josef‐Peter Schöggl & Rupert J. Baumgartner, 2023. "Application of digital technologies for sustainable product management in a circular economy: A review," Business Strategy and the Environment, Wiley Blackwell, vol. 32(3), pages 1159-1174, March.
    14. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    15. Liangfei Qiu & Yili (Kevin) Hong & Andrew Whinston, 2022. "Special Issue of Production and Operations Management “Social Technologies in Operations”," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 868-869, February.
    16. Dazhou Lei & Hao Hu & Dongyang Geng & Jianshen Zhang & Yongzhi Qi & Sheng Liu & Zuo‐Jun Max Shen, 2023. "New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 655-673, February.
    17. Jónas Oddur Jónasson & Kamalini Ramdas & Alp Sungu, 2022. "Social impact operations at the global base of the pyramid," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4364-4378, December.
    18. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    19. Adam N. Elmachtoub & Paul Grigas, 2022. "Smart “Predict, then Optimize”," Management Science, INFORMS, vol. 68(1), pages 9-26, January.
    20. Lingli Wang & Ni Huang & Yili Hong & Luning Liu & Xunhua Guo & Guoqing Chen, 2023. "Voice‐based AI in call center customer service: A natural field experiment," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1002-1018, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:8:p:5704-5723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.