IDEAS home Printed from https://ideas.repec.org/a/bla/popmgt/v32y2023i2p655-673.html
   My bibliography  Save this article

New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach

Author

Listed:
  • Dazhou Lei
  • Hao Hu
  • Dongyang Geng
  • Jianshen Zhang
  • Yongzhi Qi
  • Sheng Liu
  • Zuo‐Jun Max Shen

Abstract

New products are highly valued by manufacturers and retailers due to their vital role in revenue generation. Product life cycle (PLC) curves often vary by their shapes and are complicated by promotional activities that induce spiky and irregular behaviors. We collaborate with JD.com to develop a flexible PLC curve forecasting framework based on Bayesian functional regression that accounts for useful covariate information, including product attributes and promotion. The functional model treats PLC curves as target variables and includes both scalar and functional predictors, capturing time‐varying promotional activities. Harnessing the power of basis function transformation, the developed model can effectively characterize the local features and temporal evolution of sales curves. Our Bayesian framework can generate initial curve forecasts before the product launch and update the forecasts dynamically as new sales data are collected. We validate the superior performance of our method through extensive numerical experiments using three real‐world data sets. Our forecasting framework reduces the forecasting error by 5.35%–30.76% over JD.com's current model and outperforms alternative models significantly. Furthermore, the estimated promotion effect function provides useful insights into how promotional activities interact with sales curves.

Suggested Citation

  • Dazhou Lei & Hao Hu & Dongyang Geng & Jianshen Zhang & Yongzhi Qi & Sheng Liu & Zuo‐Jun Max Shen, 2023. "New product life cycle curve modeling and forecasting with product attributes and promotion: A Bayesian functional approach," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 655-673, February.
  • Handle: RePEc:bla:popmgt:v:32:y:2023:i:2:p:655-673
    DOI: 10.1111/poms.13892
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/poms.13892
    Download Restriction: no

    File URL: https://libkey.io/10.1111/poms.13892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yan Shang & David Dunson & Jing-Sheng Song, 2017. "Exploiting Big Data in Logistics Risk Assessment via Bayesian Nonparametrics," Operations Research, INFORMS, vol. 65(6), pages 1574-1588, December.
    2. William E. Cox & Jr., 1967. "Product Life Cycles as Marketing Models," The Journal of Business, University of Chicago Press, vol. 40, pages 375-375.
    3. Ruomeng Cui & Santiago Gallino & Antonio Moreno & Dennis J. Zhang, 2018. "The Operational Value of Social Media Information," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1749-1769, October.
    4. Gah-Yi Ban & Jérémie Gallien & Adam J. Mersereau, 2019. "Dynamic Procurement of New Products with Covariate Information: The Residual Tree Method," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 798-815, October.
    5. Ramya Neelamegham & Pradeep Chintagunta, 1999. "A Bayesian Model to Forecast New Product Performance in Domestic and International Markets," Marketing Science, INFORMS, vol. 18(2), pages 115-136.
    6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
    7. Ashish Sood & Gareth M. James & Gerard J. Tellis, 2009. "Functional Regression: A New Model for Predicting Market Penetration of New Products," Marketing Science, INFORMS, vol. 28(1), pages 36-51, 01-02.
    8. Sunil Kumar & Jayashankar M. Swaminathan, 2003. "Diffusion of Innovations Under Supply Constraints," Operations Research, INFORMS, vol. 51(6), pages 866-879, December.
    9. Wonyul Lee & Michelle F. Miranda & Philip Rausch & Veerabhadran Baladandayuthapani & Massimo Fazio & J. Crawford Downs & Jeffrey S. Morris, 2019. "Bayesian Semiparametric Functional Mixed Models for Serially Correlated Functional Data, With Application to Glaucoma Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 495-513, April.
    10. Rajkumar Venkatesan & Trichy V. Krishnan & V. Kumar, 2004. "Evolutionary Estimation of Macro-Level Diffusion Models Using Genetic Algorithms: An Alternative to Nonlinear Least Squares," Marketing Science, INFORMS, vol. 23(3), pages 451-464, August.
    11. Jason Acimovic & Francisco Erize & Kejia Hu & Douglas J. Thomas & Jan A. Van Mieghem, 2019. "Product Life Cycle Data Set: Raw and Cleaned Data of Weekly Orders for Personal Computers," Service Science, INFORMS, vol. 21(1), pages 171-176, January.
    12. Jonathan Lee & Peter Boatwright & Wagner A. Kamakura, 2003. "A Bayesian Model for Prelaunch Sales Forecasting of Recorded Music," Management Science, INFORMS, vol. 49(2), pages 179-196, February.
    13. Jeff Goldsmith & Ciprian M. Crainiceanu & Brian Caffo & Daniel Reich, 2012. "Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 61(3), pages 453-469, May.
    14. Phillip M. Yelland & Xiaojing Dong, 2014. "Forecasting Demand for Fashion Goods:A Hierarchical Bayesian Approach," Springer Books, in: Tsan-Ming Choi & Chi-Leung Hui & Yong Yu (ed.), Intelligent Fashion Forecasting Systems: Models and Applications, edition 127, chapter 0, pages 71-94, Springer.
    15. Tonya Boone & Ram Ganeshan & Robert L. Hicks & Nada R. Sanders, 2018. "Can Google Trends Improve Your Sales Forecast?," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1770-1774, October.
    16. Kris Johnson Ferreira & Bin Hong Alex Lee & David Simchi-Levi, 2016. "Analytics for an Online Retailer: Demand Forecasting and Price Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 18(1), pages 69-88, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
    2. Goodwin, Paul & Meeran, Sheik & Dyussekeneva, Karima, 2014. "The challenges of pre-launch forecasting of adoption time series for new durable products," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1082-1097.
    3. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    4. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    5. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - Leibniz Information Centre for Economics.
    6. Phillip M. Yelland & Shinji Kim & Renée Stratulate, 2010. "A Bayesian Model for Sales Forecasting at Sun Microsystems," Interfaces, INFORMS, vol. 40(2), pages 118-129, April.
    7. Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).
    8. Lemmens, A. & Croux, C. & Stremersch, S., 2012. "Dynamics in international market segmentation of new product growth," Other publications TiSEM 306086bd-670f-48d2-97d1-3, Tilburg University, School of Economics and Management.
    9. Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
    10. Jung, Seung Hwan & Yang, Yunsi, 2023. "On the value of operational flexibility in the trailer shipment and assignment problem: Data-driven approaches and reinforcement learning," International Journal of Production Economics, Elsevier, vol. 264(C).
    11. Ramírez-Hassan, Andrés & Montoya-Blandón, Santiago, 2020. "Forecasting from others’ experience: Bayesian estimation of the generalized Bass model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 442-465.
    12. Chuan Zhang & Yu-Xin Tian & Ling-Wei Fan, 2020. "Improving the Bass model’s predictive power through online reviews, search traffic and macroeconomic data," Annals of Operations Research, Springer, vol. 295(2), pages 881-922, December.
    13. Kejia Hu & Jason Acimovic & Francisco Erize & Douglas J. Thomas & Jan A. Van Mieghem, 2019. "Forecasting New Product Life Cycle Curves: Practical Approach and Empirical Analysis," Service Science, INFORMS, vol. 21(1), pages 66-85, January.
    14. Xinxue (Shawn) Qu & Aslan Lotfi & Dipak C. Jain & Zhengrui Jiang, 2022. "Predicting upgrade timing for successive product generations: An exponential‐decay proportional hazard model," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2067-2083, May.
    15. Robert P. Rooderkerk & Nicole DeHoratius & Andrés Musalem, 2022. "The past, present, and future of retail analytics: Insights from a survey of academic research and interviews with practitioners," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3727-3748, October.
    16. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    17. Krishnan, Trichy V. & Feng, Shanfei & Jain, Dipak C., 2023. "Peak sales time prediction in new product sales: Can a product manager rely on it?," Journal of Business Research, Elsevier, vol. 165(C).
    18. Delre, Sebastiano A. & Panico, Claudio & Wierenga, Berend, 2017. "Competitive strategies in the motion picture industry: An ABM to study investment decisions," International Journal of Research in Marketing, Elsevier, vol. 34(1), pages 69-99.
    19. Xiangyu Chang & Yinghui Huang & Mei Li & Xin Bo & Subodha Kumar, 2021. "Efficient Detection of Environmental Violators: A Big Data Approach," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1246-1270, May.
    20. Jonathan Lee & Peter Boatwright & Wagner A. Kamakura, 2003. "A Bayesian Model for Prelaunch Sales Forecasting of Recorded Music," Management Science, INFORMS, vol. 49(2), pages 179-196, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:popmgt:v:32:y:2023:i:2:p:655-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1937-5956 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.