IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2103.01907.html
   My bibliography  Save this paper

Fairness in Credit Scoring: Assessment, Implementation and Profit Implications

Author

Listed:
  • Nikita Kozodoi
  • Johannes Jacob
  • Stefan Lessmann

Abstract

The rise of algorithmic decision-making has spawned much research on fair machine learning (ML). Financial institutions use ML for building risk scorecards that support a range of credit-related decisions. Yet, the literature on fair ML in credit scoring is scarce. The paper makes three contributions. First, we revisit statistical fairness criteria and examine their adequacy for credit scoring. Second, we catalog algorithmic options for incorporating fairness goals in the ML model development pipeline. Last, we empirically compare different fairness processors in a profit-oriented credit scoring context using real-world data. The empirical results substantiate the evaluation of fairness measures, identify suitable options to implement fair credit scoring, and clarify the profit-fairness trade-off in lending decisions. We find that multiple fairness criteria can be approximately satisfied at once and recommend separation as a proper criterion for measuring the fairness of a scorecard. We also find fair in-processors to deliver a good balance between profit and fairness and show that algorithmic discrimination can be reduced to a reasonable level at a relatively low cost. The codes corresponding to the paper are available on GitHub.

Suggested Citation

  • Nikita Kozodoi & Johannes Jacob & Stefan Lessmann, 2021. "Fairness in Credit Scoring: Assessment, Implementation and Profit Implications," Papers 2103.01907, arXiv.org, revised Jun 2022.
  • Handle: RePEc:arx:papers:2103.01907
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2103.01907
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
    2. Verbraken, Thomas & Bravo, Cristián & Weber, Richard & Baesens, Bart, 2014. "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research, Elsevier, vol. 238(2), pages 505-513.
    3. J Banasik & J Crook & L Thomas, 2003. "Sample selection bias in credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 822-832, August.
    4. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    5. Somers, Mark & Whittaker, Joe, 2007. "Quantile regression for modelling distributions of profit and loss," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1477-1487, December.
    6. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kozodoi, Nikita & Jacob, Johannes & Lessmann, Stefan, 2022. "Fairness in credit scoring: Assessment, implementation and profit implications," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1083-1094.
    2. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    3. Michael Bucker & Gero Szepannek & Alicja Gosiewska & Przemyslaw Biecek, 2020. "Transparency, Auditability and eXplainability of Machine Learning Models in Credit Scoring," Papers 2009.13384, arXiv.org.
    4. Hussein A. Abdou & John Pointon, 2011. "Credit Scoring, Statistical Techniques And Evaluation Criteria: A Review Of The Literature," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(2-3), pages 59-88, April.
    5. Zha, Yong & Wang, Yuting & Li, Quan & Yao, Wenying, 2022. "Credit offering strategy and dynamic pricing in the presence of consumer strategic behavior," European Journal of Operational Research, Elsevier, vol. 303(2), pages 753-766.
    6. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    7. Kozodoi, Nikita & Lessmann, Stefan & Alamgir, Morteza & Moreira-Matias, Luis & Papakonstantinou, Konstantinos, 2025. "Fighting sampling bias: A framework for training and evaluating credit scoring models," European Journal of Operational Research, Elsevier, vol. 324(2), pages 616-628.
    8. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    9. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    10. Chen, Shunqin & Guo, Zhengfeng & Zhao, Xinlei, 2021. "Predicting mortgage early delinquency with machine learning methods," European Journal of Operational Research, Elsevier, vol. 290(1), pages 358-372.
    11. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    12. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    13. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    14. József Vörös, 2024. "Some properties of the maximum loss on loan portfolios," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 32(1), pages 155-176, March.
    15. Xia, Yufei & Han, Zhiyin & Li, Yawen & He, Lingyun, 2025. "Credit scoring model for fintech lending: An integration of large language models and FocalPoly loss," International Journal of Forecasting, Elsevier, vol. 41(3), pages 894-919.
    16. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    17. Dumitrescu, Elena & Hué, Sullivan & Hurlin, Christophe & Tokpavi, Sessi, 2022. "Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1178-1192.
    18. Christophe Hurlin & Christophe Perignon & Sébastien Saurin, 2021. "The Fairness of Credit Scoring Models," Working Papers hal-03501452, HAL.
    19. Baesens, Bart & Smedts, Kristien, 2025. "Boosting credit risk models," The British Accounting Review, Elsevier, vol. 57(4).
    20. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.01907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.