IDEAS home Printed from https://ideas.repec.org/a/eee/finsta/v72y2024ics1572308924000378.html
   My bibliography  Save this article

Financial contagion among the GSIBs and regulatory interventions

Author

Listed:
  • Lai, Jennifer
  • McNelis, Paul D.

Abstract

This paper compares three methods for assessing the contagion of risk among ten Globally Significant International Banks, known as GSIBs, listed on the New York Stock Exchange with daily and weekly data sets from 2007 to 2020, based on Machine Learning and Network Analysis. In particular we identify the banks which are the largest net sources or transmitters of risk, and net receptors of risk. We also examine the response of regulatory actions, in the form of fines and BIS Bin Classification for capital adequacy.

Suggested Citation

  • Lai, Jennifer & McNelis, Paul D., 2024. "Financial contagion among the GSIBs and regulatory interventions," Journal of Financial Stability, Elsevier, vol. 72(C).
  • Handle: RePEc:eee:finsta:v:72:y:2024:i:c:s1572308924000378
    DOI: 10.1016/j.jfs.2024.101252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1572308924000378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfs.2024.101252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    2. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    5. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    6. Francis X. Diebold & Kamil Yilmaz, 2013. "Measuring the Dynamics of Global Business Cycle Connectedness," PIER Working Paper Archive 13-070, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. Irina Mihai & Florian Neagu, 2011. "CDS and government bond spreads - how informative are they for financial stability analysis?," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Proceedings of the IFC Conference on "Initiatives to address data gaps revealed by the financial crisis", Basel, 25-26 August 2010, volume 34, pages 415-429, Bank for International Settlements.
    8. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    9. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    10. Tri Vi Dang & Gary Gorton & Bengt Holmström & Guillermo Ordoñez, 2017. "Banks as Secret Keepers," American Economic Review, American Economic Association, vol. 107(4), pages 1005-1029, April.
    11. Beckers, Stan, 1981. "Standard deviations implied in option prices as predictors of future stock price variability," Journal of Banking & Finance, Elsevier, vol. 5(3), pages 363-381, September.
    12. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    13. Augustin, Patrick & Subrahmanyam, Marti G. & Tang, Dragon Yongjun & Wang, Sarah Qian, 2014. "Credit Default Swaps: A Survey," Foundations and Trends(R) in Finance, now publishers, vol. 9(1-2), pages 1-196, December.
    14. Iorgova, Silvia & Ross, Chase P., 2023. "Investor information and bank instability during the European debt crisis," Journal of Financial Stability, Elsevier, vol. 64(C).
    15. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    16. Oliver Hart & Luigi Zingales, 2011. "A New Capital Regulation for Large Financial Institutions," American Law and Economics Review, American Law and Economics Association, vol. 13(2), pages 453-490.
    17. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    18. Tirupam Goel & Ulf Lewrick & Aakriti Mathur, 2019. "Playing it safe: global systemically important banks after the crisis," BIS Quarterly Review, Bank for International Settlements, September.
    19. Francis X. Diebold & Kamil Yilmaz, 2022. "On the Past, Present, and Future of the Diebold-Yilmaz Approach to Dynamic Network Connectedness," Koç University-TUSIAD Economic Research Forum Working Papers 2207, Koc University-TUSIAD Economic Research Forum.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bostanci, Gorkem & Yilmaz, Kamil, 2020. "How connected is the global sovereign credit risk network?," Journal of Banking & Finance, Elsevier, vol. 113(C).
    2. Kamil Yilmaz, 2018. "Bank Volatility Connectedness in South East Asia," Koç University-TUSIAD Economic Research Forum Working Papers 1807, Koc University-TUSIAD Economic Research Forum.
    3. Christian Gross & Pierre L. Siklos, 2020. "Analyzing credit risk transmission to the nonfinancial sector in Europe: A network approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(1), pages 61-81, January.
    4. Gong, Xu & Liao, Qin, 2024. "Physical climate risk attention and dynamic volatility connectedness among new energy stocks," Energy Economics, Elsevier, vol. 136(C).
    5. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    6. Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020. "Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
    7. Lovcha, Yuliya & Pérez Laborda, Àlex, 2018. "Volatility Spillovers in a Long-Memory VAR: an Application to Energy Futures Returns," Working Papers 2072/307362, Universitat Rovira i Virgili, Department of Economics.
    8. Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
    9. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    10. Matteo Barigozzi & Marc Hallin, 2017. "A network analysis of the volatility of high dimensional financial series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 581-605, April.
    11. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    12. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Papers 1510.05118, arXiv.org, revised Jul 2016.
    13. Jonathan E. Ogbuabor & Anthony Orji & Gladys C. Aneke & Oyun Erdene-Urnukh, 2016. "Measuring the Real and Financial Connectedness of Selected African Economies with the Global Economy," South African Journal of Economics, Economic Society of South Africa, vol. 84(3), pages 364-399, September.
    14. Uluceviz, Erhan & Yilmaz, Kamil, 2021. "Measuring real–financial connectedness in the U.S. economy," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    15. Silva, Thiago Christiano & Braz, Tercio & Tabak, Benjamin Miranda, 2024. "Mapping the landscape of energy markets research: A bibliometric analysis and predictive assessment using machine learning," Energy Economics, Elsevier, vol. 136(C).
    16. Wang, Kangsheng & Wen, Fenghua & Gong, Xu, 2024. "Oil prices and systemic financial risk: A complex network analysis," Energy, Elsevier, vol. 293(C).
    17. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    18. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    19. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    20. Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finsta:v:72:y:2024:i:c:s1572308924000378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jfstabil .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.