Semiparametric Panel Data Using Neural Networks
Author
Abstract
Suggested Citation
DOI: 10.22004/ag.econ.258128
Download full text from publisher
References listed on IDEAS
- Hoderlein, Stefan & White, Halbert, 2012.
"Nonparametric identification in nonseparable panel data models with generalized fixed effects,"
Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
- Stefan Hoderlein & Halbert White, 2009. "Nonparametric Identification in Nonseparable Panel Data Models with Generalized Fixed Effects," Boston College Working Papers in Economics 746, Boston College Department of Economics.
- Stefan Hoderlein & Halbert White, 2009. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," CeMMAP working papers CWP33/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Henderson, Daniel J. & Carroll, Raymond J. & Li, Qi, 2008. "Nonparametric estimation and testing of fixed effects panel data models," Journal of Econometrics, Elsevier, vol. 144(1), pages 257-275, May.
- Yann LeCun & Yoshua Bengio & Geoffrey Hinton, 2015. "Deep learning," Nature, Nature, vol. 521(7553), pages 436-444, May.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Li, Cong & Liang, Zhongwen, 2015. "Asymptotics for nonparametric and semiparametric fixed effects panel models," Journal of Econometrics, Elsevier, vol. 185(2), pages 420-434.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Crane-Droesch, Andrew & Marshall, Elizabeth & Riddle, Anne & Rosch, Stephanie D. & Cooper, Joseph C. & Wallander, Steven, 2018. "Climate and Crop Insurance: Agricultural Risk Management into the 21st Century," 2018 Annual Meeting, August 5-7, Washington, D.C. 274292, Agricultural and Applied Economics Association.
- Shuwen Hu & You-Gan Wang & Christopher Drovandi & Taoyun Cao, 2023. "Predictions of machine learning with mixed-effects in analyzing longitudinal data under model misspecification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 681-711, June.
- Mihaela Simionescu & Adam Wojciechowski & Arkadiusz Tomczyk & Marcin Rabe, 2021. "Revised Environmental Kuznets Curve for V4 Countries and Baltic States," Energies, MDPI, vol. 14(11), pages 1-15, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Joseph Hadaya & Arjun Verma & Yas Sanaiha & Ramin Ramezani & Nida Qadir & Peyman Benharash, 2022. "Machine learning-based modeling of acute respiratory failure following emergency general surgery operations," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-13, April.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
- Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank, Research and Statistics Department.
- Anurag Satpathi & Parul Setiya & Bappa Das & Ajeet Singh Nain & Prakash Kumar Jha & Surendra Singh & Shikha Singh, 2023. "Comparative Analysis of Statistical and Machine Learning Techniques for Rice Yield Forecasting for Chhattisgarh, India," Sustainability, MDPI, vol. 15(3), pages 1-18, February.
- Wenjia Wang & Yi-Hui Zhou, 2022. "A Double Penalty Model for Ensemble Learning," Mathematics, MDPI, vol. 10(23), pages 1-23, November.
- Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020.
"Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
- Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2019. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model," Jena Economics Research Papers 2019-006, Friedrich-Schiller-University Jena.
- Freire, Gustavo, 2021. "Tail risk and investors’ concerns: Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Kockerols, Thore & Kok, Christoffer, 2019.
"Leaning against the wind: macroprudential policy and the financial cycle,"
Working Paper Series
2223, European Central Bank.
- Thore Kockerols & Christoffer Kok, 2019. "“Leaning against the wind”, macroprudential policy and the financial cycle," Working Paper 2019/1, Norges Bank.
- Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
- Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
- Liang, Chong & Schienle, Melanie, 2019.
"Determination of vector error correction models in high dimensions,"
Journal of Econometrics, Elsevier, vol. 208(2), pages 418-441.
- Liang, Chong & Schienle, Melanie, 2019. "Determination of vector error correction models in high dimensions," Working Paper Series in Economics 124, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Román Salmerón Gómez & Ainara Rodríguez Sánchez & Catalina García García & José García Pérez, 2020. "The VIF and MSE in Raise Regression," Mathematics, MDPI, vol. 8(4), pages 1-28, April.
- Luca Insolia & Ana Kenney & Martina Calovi & Francesca Chiaromonte, 2021. "Robust Variable Selection with Optimality Guarantees for High-Dimensional Logistic Regression," Stats, MDPI, vol. 4(3), pages 1-17, August.
- Breinlich, Holger & Corradi, Valentina & Rocha, Nadia & Ruta, Michele & Silva, J.M.C. Santos & Zylkin, Tom, 2021.
"Machine learning in international trade research - evaluating the impact of trade agreements,"
LSE Research Online Documents on Economics
114379, London School of Economics and Political Science, LSE Library.
- Breinlich, Holger & Corradi, Valentina & Rocha, Nadia & Ruta, Michele & Santos Silva, JMC & Zylkin, Thomas, 2022. "Machine Learning in International Trade Research - Evaluating the Impact of Trade Agreements," CEPR Discussion Papers 17325, C.E.P.R. Discussion Papers.
- Breinlich,Holger & Corradi,Valentina & Rocha,Nadia & Ruta,Michele & Santos Silva,J.M.C. & Zylkin,Tom, 2021. "Machine Learning in International Trade Research : Evaluating the Impact of Trade Agreements," Policy Research Working Paper Series 9629, The World Bank.
- Holger Breinlich & Valentina Corradi & Nadia Rocha & Michele Ruta & J.M.C. Santos Silva & Tom Zylkin, 2021. "Machine learning in international trade research - evaluating the impact of trade agreements," CEP Discussion Papers dp1776, Centre for Economic Performance, LSE.
- Holger Breinlich & Valentina Corradi & Nadia Rocha & Michele Ruta & Joao M.C. Santos Silva & Tom Zylkin, 2021. "Machine Learning in International Trade Research ?- Evaluating the Impact of Trade Agreements," School of Economics Discussion Papers 0521, School of Economics, University of Surrey.
- Saptarshi Chatterjee & Shrabanti Chowdhury & Sanjib Basu, 2021. "A model‐free approach for testing association," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 511-531, June.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Rana Muhammad Adnan Ikram & Leonardo Goliatt & Ozgur Kisi & Slavisa Trajkovic & Shamsuddin Shahid, 2022. "Covariance Matrix Adaptation Evolution Strategy for Improving Machine Learning Approaches in Streamflow Prediction," Mathematics, MDPI, vol. 10(16), pages 1-30, August.
- Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
- Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
More about this item
Keywords
Research Methods/Statistical Methods; Land Economics/Use; Productivity Analysis;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2018-10-01 (Big Data)
- NEP-CMP-2018-10-01 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea17:258128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.