IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Nonparametric estimation and testing of fixed effects panel data models

  • Henderson, Daniel J.
  • Carroll, Raymond J.
  • Li, Qi

In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VC0-4RTBRSR-1/1/d008ab557392cee61d01c5d934c682f0
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 144 (2008)
Issue (Month): 1 (May)
Pages: 257-275

as
in new window

Handle: RePEc:eee:econom:v:144:y:2008:i:1:p:257-275
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Li, Q. & Wang, Suojin, 1998. "A simple consistent bootstrap test for a parametric regression function," Journal of Econometrics, Elsevier, vol. 87(1), pages 145-165, August.
  2. Aman Ullah & Tae-Hwy Lee, 2000. "Nonparametric Bootstrap Tests for Neglected Nonlinearity in Time Series Regression Models," Working papers 77, Centre for Development Economics, Delhi School of Economics.
  3. Whang, Yoon-Jae & Andrews, Donald W. K., 1993. "Tests of specification for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 277-318.
  4. Oliver Linton & Enno Mammen & N Nielsen, 2000. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm under Weak Conditions," STICERD - Econometrics Paper Series /2000/386, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  5. Naisyin Wang & Raymond J. Carroll & Xihong Lin, 2005. "Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 147-157, March.
  6. Xihong Lin & Raymond J. Carroll, 2006. "Semiparametric estimation in general repeated measures problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 69-88.
  7. Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-96, May.
  8. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
  9. Xihong Lin, 2004. "Equivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data," Biometrika, Biometrika Trust, vol. 91(1), pages 177-193, March.
  10. Naisyin Wang, 2003. "Marginal nonparametric kernel regression accounting for within-subject correlation," Biometrika, Biometrika Trust, vol. 90(1), pages 43-52, March.
  11. Ke C. & Wang Y., 2001. "Semiparametric Nonlinear Mixed-Effects Models and Their Applications," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1272-1298, December.
  12. Lin X. & Carroll R. J., 2001. "Semiparametric Regression for Clustered Data Using Generalized Estimating Equations," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1045-1056, September.
  13. Su, Liangjun & Ullah, Aman, 2006. "Profile likelihood estimation of partially linear panel data models with fixed effects," Economics Letters, Elsevier, vol. 92(1), pages 75-81, July.
  14. Wu H. & Zhang J-T., 2002. "Local Polynomial Mixed-Effects Models for Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 883-897, September.
  15. Fan, Jianqing & Jiang, Jiancheng, 2005. "Nonparametric Inferences for Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 890-907, September.
  16. Henderson, Daniel J. & Ullah, Aman, 2005. "A nonparametric random effects estimator," Economics Letters, Elsevier, vol. 88(3), pages 403-407, September.
  17. Opsomer, Jan & Ruppert, David, 1997. "Fitting a Bivariate Additive Model by Local Polynomial Regression," Staff General Research Papers 1071, Iowa State University, Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:144:y:2008:i:1:p:257-275. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.