IDEAS home Printed from
   My bibliography  Save this article

Marginal nonparametric kernel regression accounting for within-subject correlation


  • Naisyin Wang


There has been substantial recent interest in non- and semiparametric methods for longitudinal or clustered data with dependence within clusters. It has been shown rather inexplicably that, when standard kernel smoothing methods are used in a natural way, higher efficiency is obtained by assuming independence than by using the true correlation structure. It is shown here that this result is a natural consequence of how standard kernel methods incorporate the within-subject correlation in the asymptotic setting considered, where the cluster sizes are fixed and the cluster number increases. In this paper, an alternative kernel smoothing method is proposed. Unlike the standard methods, the smallest variance of the new estimator is achieved when the true correlation is assumed. Asymptotically, the variance of the proposed method is uniformly smaller than that of the most efficient working independence approach. A small simulation study shows that significant improvement is obtained for finite samples. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Naisyin Wang, 2003. "Marginal nonparametric kernel regression accounting for within-subject correlation," Biometrika, Biometrika Trust, vol. 90(1), pages 43-52, March.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:43-52

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:1:p:43-52. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.