IDEAS home Printed from https://ideas.repec.org/a/aea/apandp/v115y2025p79-84.html
   My bibliography  Save this article

Nowcasting Distributional National Accounts for the United States: A Machine Learning Approach

Author

Listed:
  • Gary Cornwall
  • Marina Gindelsky

Abstract

Inequality statistics are usually calculated from high-quality microdata, typically available with a one-to-two-year lag. In turbulent times, policymakers and data users need timely estimates. We use an elastic net to nowcast the overall Gini coefficient and quintile-level income shares of personal income published by the US Bureau of Economic Analysis. The nowcasts (2020–2023) predict turning points with at least 90 percent accuracy across all metrics and significantly less error than naive models. We find that we can create advance inequality estimates approximately one month after the end of the calendar year, reducing the present lag by almost a year.

Suggested Citation

  • Gary Cornwall & Marina Gindelsky, 2025. "Nowcasting Distributional National Accounts for the United States: A Machine Learning Approach," AEA Papers and Proceedings, American Economic Association, vol. 115, pages 79-84, May.
  • Handle: RePEc:aea:apandp:v:115:y:2025:p:79-84
    DOI: 10.1257/pandp.20251105
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/doi/10.1257/pandp.20251105
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.

    File URL: https://www.aeaweb.org/articles/materials/23022
    Download Restriction: no

    File URL: https://libkey.io/10.1257/pandp.20251105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gerald Auten & David Splinter, 2024. "Income Inequality in the United States: Using Tax Data to Measure Long-Term Trends," Journal of Political Economy, University of Chicago Press, vol. 132(7), pages 2179-2227.
    2. Timm Bönke & Geraldine Dany-Knedlik & Laura Pagenhardt, 2023. "New DIW Berlin Model Can Nowcast the Current Income Distribution; Inequality Likely to Slightly Increase in 2023," DIW Weekly Report, DIW Berlin, German Institute for Economic Research, vol. 13(43/44), pages 283-289.
    3. Olga Cantó & Francesco Figari & Carlo V. Fiorio & Sarah Kuypers & Sarah Marchal & Marina Romaguera‐de‐la‐Cruz & Iva V. Tasseva & Gerlinde Verbist, 2022. "Welfare Resilience at the Onset of COVID‐19 Pandemic in a Selection of European Countries: Impact on Public Finance and Household Incomes," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(2), pages 293-322, June.
    4. Jekaterina Navicke & Olga Rastrigina & Holly Sutherland, 2014. "Nowcasting Indicators of Poverty Risk in the European Union: A Microsimulation Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 119(1), pages 101-119, October.
    5. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    6. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2024. "Forecasting the UK top 1% income share in a shifting world," Economica, London School of Economics and Political Science, vol. 91(363), pages 1047-1074, July.
    7. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    8. Oriol Aspachs & Ruben Durante & Alberto Graziano & Josep Mestres & José Garcia Montalvo & Marta Reynal-Querol, 2020. "Real-Time inequality and the welfare state in motion: Evidence from COVID-19 in Spain," Economics Working Papers 1741, Department of Economics and Business, Universitat Pompeu Fabra.
    9. Dennis J. Fixle & Marina Gindelsky & Robert Kornfeld, 2021. "The Feasibility of a Quarterly Distribution of Personal Income," BEA Working Papers 0191, Bureau of Economic Analysis.
    10. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    11. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    12. Vanda Almeida & Salvador Barrios & Michael Christl & Silvia Poli & Alberto Tumino & Wouter Wielen, 2021. "The impact of COVID-19 on households´ income in the EU," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 19(3), pages 413-431, September.
    13. Oriol Aspachs & Ruben Durante & Alberto Graziano & Josep Mestres & José Garcia Montalvo & Marta Reynal-Querol, 2020. "Real-time inequality and the welfare state in motion: Evidence from COVID-19 in Spain," Economics Working Papers 1734, Department of Economics and Business, Universitat Pompeu Fabra.
    14. Cathal O'Donoghue & Jason Loughrey, 2014. "Nowcasting in Microsimulation Models: A Methodological Survey," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(4), pages 1-12.
    15. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    16. Fernandez, Roque B, 1981. "A Methodological Note on the Estimation of Time Series," The Review of Economics and Statistics, MIT Press, vol. 63(3), pages 471-476, August.
    17. Jinjing Li & Yogi Vidyattama & Hai Anh La & Riyana Miranti & Denisa M. Sologon, 2022. "Estimating the Impact of Covid-19 and Policy Responses on Australian Income Distribution Using Incomplete Data," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(1), pages 1-31, July.
    18. Kim, Hyun Hak & Swanson, Norman R., 2014. "Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence," Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
    19. Paul Hofmarcher & Jesús Crespo Cuaresma & Bettina Grün & Kurt Hornik, 2015. "Last Night a Shrinkage Saved My Life: Economic Growth, Model Uncertainty and Correlated Regressors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(2), pages 133-144, March.
    20. Michael M. Batty & Jesse Bricker & Ella Deeken & Sarah Friedman & Alice Henriques Volz & Eric R. Nielsen & Sarah Reber & Kamila Sommer, 2020. "Updating the Distributional Financial Accounts," FEDS Notes 2020-11-09-2, Board of Governors of the Federal Reserve System (U.S.).
    21. Robert J. Kornfeld, 2023. "Improved Measures of Regulated Investment Companies and Real Estate Investment Trusts for the U.S. National Economic Accounts," Survey of Current Business, Bureau of Economic Analysis, May.
    22. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Domenic Franjic & Karsten Schweikert, 2025. "Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 255-269, March.
    2. Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2022. "The role of investor sentiment in forecasting housing returns in China: A machine learning approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1725-1740, December.
    3. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    4. Maria Teresa Monteduro & Dalila Rosa & Chiara Subrizi, 2024. "How to Nowcast Uncertain Income Shocks in Microsimulation Models? Evidence from COVID-19 Effects on Italian Households," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 10(2), pages 871-900, July.
    5. Lima, Luiz Renato & Meng, Fanning & Godeiro, Lucas, 2020. "Quantile forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1149-1162.
    6. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    7. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    8. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    9. Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
    10. Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
    11. Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
    12. Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
    13. O'Donoghue, Cathal & Sologon, Denisa Maria, 2023. "The Transformation of Public Policy Analysis in Times of Crisis – A Microsimulation-Nowcasting Method Using Big Data," IZA Discussion Papers 15937, Institute of Labor Economics (IZA).
    14. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
    15. Barbara Rossi, 2021. "Forecasting in the Presence of Instabilities: How We Know Whether Models Predict Well and How to Improve Them," Journal of Economic Literature, American Economic Association, vol. 59(4), pages 1135-1190, December.
    16. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    17. Jiahan Li & Ilias Tsiakas & Wei Wang, 2015. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
    18. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    19. Oguzhan Cepni & Ibrahim Ethem Guney & Doruk Kucuksarac & M. Hasan Yilmaz, 2021. "Do local and global factors impact the emerging markets' sovereign yield curves? Evidence from a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1214-1229, November.
    20. Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.

    More about this item

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:apandp:v:115:y:2025:p:79-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.