IDEAS home Printed from https://ideas.repec.org/e/c/pgo38.html
   My authors  Follow this author

Silvia Goncalves

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Timothy Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2022. "Bootstrap Inference Under Cross Sectional Dependence," Working papers 2022-14, University of Connecticut, Department of Economics.

    Cited by:

    1. Conley, Timothy G. & Kelly, Morgan, 2025. "The standard errors of persistence," Journal of International Economics, Elsevier, vol. 153(C).

  2. Silvia Goncalves & Ana María Herrera & Lutz Kilian & Elena Pesavento, 2022. "When Do State-Dependent Local Projections Work?," Working Papers 2205, Federal Reserve Bank of Dallas.

    Cited by:

    1. Sarah Arndt & Zeno Enders, 2023. "The Transmission of Supply Shocks in Different Inflation Regimes," CESifo Working Paper Series 10839, CESifo.
    2. De Santis, Roberto A. & Tornese, Tommaso, 2023. "Energy supply shocks’ nonlinearities on output and prices," Working Paper Series 2834, European Central Bank.
    3. Jessen, Jonas & Jessen, Robin & Gałecka-Burdziak, Ewa & Góra, Marek & Kluve, Jochen, 2024. "The micro and macro effects of changes in the potential benefit duration," Ruhr Economic Papers 1119, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    4. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2024. "State-dependent local projections," Journal of Econometrics, Elsevier, vol. 244(2).
    5. James Cloyne & Òscar Jordà & Alan M. Taylor, 2023. "State-Dependent Local Projections: Understanding Impulse Response Heterogeneity," NBER Working Papers 30971, National Bureau of Economic Research, Inc.
    6. Sheng, Xin & Kim, Won Joong & Gupta, Rangan & Ji, Qiang, 2023. "The impacts of oil price volatility on financial stress: Is the COVID-19 period different?," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 520-532.
    7. Kole, Erik & van Dijk, Dick, 2023. "Moments, shocks and spillovers in Markov-switching VAR models," Journal of Econometrics, Elsevier, vol. 236(2).
    8. Rünstler, Gerhard, 2024. "The macroeconomic impact of euro area labor market reforms: evidence from a narrative panel VAR," European Economic Review, Elsevier, vol. 168(C).
    9. Bunce, Alan & Carrillo-Maldonado, Paul, 2023. "Asymmetric effect of the oil price in the ecuadorian economy," Energy Economics, Elsevier, vol. 124(C).
    10. Syed Sadaqat Ali Shah & Muhammad Asim Afridi, 2023. "Cyclical variation of fiscal multipliers in Caucasus and Central Asia economies: an empirical evidence," Economic Change and Restructuring, Springer, vol. 56(6), pages 4531-4563, December.
    11. Miescu, Mirela & Mumtaz, Haroon & Theodoridis, Konstantinos, 2024. "Non-linear Dynamics of Oil Supply News Shocks," Cardiff Economics Working Papers E2024/18, Cardiff University, Cardiff Business School, Economics Section.
    12. Finck, David & Hoffmann, Mathias & Hürtgen, Patrick, 2023. "On the empirical relevance of the exchange rate as a shock absorber at the zero lower bound," Discussion Papers 10/2023, Deutsche Bundesbank.

  3. Silvia Goncalves & Ana María Herrera & Lutz Kilian & Elena Pesavento, 2020. "Impulse Response Analysis for Structural Dynamic Models with Nonlinear Regressors," Working Papers 2019, Federal Reserve Bank of Dallas.

    Cited by:

    1. Camila Gutierrez & Javier Turen & Alejandro Vicondoa, 2025. "Global Financial Spillovers of ChineseMacroeconomic Surprises," Working Papers 366, Red Nacional de Investigadores en Economía (RedNIE).
    2. Lutz Kilian & Xiaoqing Zhou, 2023. "Oil Price Shocks and Inflation," Working Papers 2312, Federal Reserve Bank of Dallas.
    3. Goncalves, Silvia & Herrera, Ana Maria & Kilian, Lutz & Pesavento, Elena, 2022. "When do state-dependent local projections work?," CEPR Discussion Papers 17265, C.E.P.R. Discussion Papers.
    4. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2024. "State-dependent local projections," Journal of Econometrics, Elsevier, vol. 244(2).
    5. Lucidi, Francesco Simone & Pisa, Marta Maria & Tancioni, Massimiliano, 2024. "The effects of temperature shocks on energy prices and inflation in the Euro Area," European Economic Review, Elsevier, vol. 166(C).
    6. Alloza, Mario & Gonzalo, Jesús & Sanz, Carlos, 2025. "Dynamic effects of persistent shocks," UC3M Working papers. Economics 45381, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Alessandri, Piergiorgio & Jordà, Òscar & Venditti, Fabrizio, 2025. "Decomposing the monetary policy multiplier," Journal of Monetary Economics, Elsevier, vol. 152(C).
    8. Pablo Guerrón-Quintana & Alexey Khazanov & Molin Zhong, 2023. "Financial and Macroeconomic Data Through the Lens of a Nonlinear Dynamic Factor Model," Finance and Economics Discussion Series 2023-027, Board of Governors of the Federal Reserve System (U.S.).
    9. Martin Bruns & Michele Piffer, 2021. "Monetary policy shocks over the business cycle: Extending the Smooth Transition framework," University of East Anglia School of Economics Working Paper Series 2021-07, School of Economics, University of East Anglia, Norwich, UK..
    10. Carriero, Andrea & Clark, Todd E. & Marcellino, Massimiliano & Mertens, Elmar, 2023. "Shadow-rate VARs," Discussion Papers 14/2023, Deutsche Bundesbank.
    11. Eugene Dettaa & Endong Wang, 2024. "Inference in High-Dimensional Linear Projections: Multi-Horizon Granger Causality and Network Connectedness," Papers 2410.04330, arXiv.org.
    12. Silvia Goncalves & Ana María Herrera & Lutz Kilian & Elena Pesavento, 2024. "Nonparametric Local Projections," Working Papers 2414, Federal Reserve Bank of Dallas.
    13. Leonardo Nogueira Ferreira, 2023. "Monetary Policy Surprises, Financial Conditions, and the String Theory Revisited," Working Papers Series 573, Central Bank of Brazil, Research Department.
    14. Luca Eduardo Fierro & Mario Martinoli, 2024. "An Empirical Inquiry into the Distributional Consequences of Energy Price Shocks," LEM Papers Series 2024/30, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    15. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.
    16. Antoine, Bertille & Sun, Wenqian, 2025. "Simulation-based estimation with many auxiliary statistics applied to long-run dynamic analysis," Journal of Econometrics, Elsevier, vol. 248(C).
    17. Giovanni Ballarin, 2023. "Impulse Response Analysis of Structural Nonlinear Time Series Models," Papers 2305.19089, arXiv.org, revised Jun 2025.
    18. Dario Caldara & Chiara Scotti & Molin Zhong, 2021. "Macroeconomic and Financial Risks: A Tale of Mean and Volatility," International Finance Discussion Papers 1326, Board of Governors of the Federal Reserve System (U.S.).

  4. Sílvia GONÇALVES & Benoit PERRON, 2018. "Bootstrapping Factor Models With Cross Sectional Dependence," Cahiers de recherche 10-2018, Centre interuniversitaire de recherche en économie quantitative, CIREQ.

    Cited by:

    1. Hou, Zhezhi & Zhao, Shunan & Kumbhakar, Subal C., 2023. "The GMM estimation of semiparametric spatial stochastic frontier models," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1450-1464.
    2. Cahan, Ercument & Bai, Jushan & Ng, Serena, 2023. "Factor-based imputation of missing values and covariances in panel data of large dimensions," Journal of Econometrics, Elsevier, vol. 233(1), pages 113-131.
    3. Huang, Haitao & Jiang, Lei & Leng, Xuan & Peng, Liang, 2023. "Bootstrap analysis of mutual fund performance," Journal of Econometrics, Elsevier, vol. 235(1), pages 239-255.
    4. Yohei Yamamoto & Naoko Hara, 2022. "Identifying factor‐augmented vector autoregression models via changes in shock variances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
    5. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    6. Andreou, E. & Gagliardini, P. & Ghysels, E. & Rubin, M., 2025. "Spanning latent and observable factors," Journal of Econometrics, Elsevier, vol. 248(C).
    7. Beyhum, Jad & Striaukas, Jonas, 2024. "Testing for sparse idiosyncratic components in factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 244(1).
    8. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    9. Shunan Zhao & Man Jin & Subal C. Kumbhakar, 2021. "Estimation of firm productivity in the presence of spillovers and common shocks," Empirical Economics, Springer, vol. 60(6), pages 3135-3170, June.
    10. Christian Brownlees & Gu{dh}mundur Stef'an Gu{dh}mundsson & Yaping Wang, 2024. "Performance of Empirical Risk Minimization For Principal Component Regression," Papers 2409.03606, arXiv.org, revised Sep 2024.
    11. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    12. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    13. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    14. Martin Iseringhausen & Konstantinos Theodoridis, 2025. "A survey-based measure of asymmetric macroeconomic risk in the euro area," Working Papers 68, European Stability Mechanism, revised 11 Feb 2025.
    15. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
    16. Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.

  5. Silvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2016. "Bootstrap prediction intervals for factor models," CIRANO Working Papers 2016s-19, CIRANO.

    Cited by:

    1. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    2. Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2023. "Expecting the unexpected: Stressed scenarios for economic growth," Working Papers 202314, University of California at Riverside, Department of Economics.
    3. Antoine Djogbenou & Silvia Gonçalves & Benoit Perron, 2015. "Bootstrap inference in regressions with estimated factors and serial correlation," CIRANO Working Papers 2015s-20, CIRANO.
    4. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
    5. GONÇALVES, Sílvia & PERRON, Benoit, 2018. "Bootstrapping factor models with cross sectional dependence," Cahiers de recherche 2018-07, Universite de Montreal, Departement de sciences economiques.
    6. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Antoine Djogbenou & Sílvia Gonçalves & Benoit Perron, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 481-502, May.
    7. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
    8. Bangzhu Zhu & Chunzhuo Wan & Ping Wang & Julien Chevallier, 2025. "Interval Forecasting of Carbon Price With a Novel Hybrid Multiscale Decomposition and Bootstrap Approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 376-390, March.
    9. Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
    10. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    11. Yohei Yamamoto & Naoko Hara, 2022. "Identifying factor‐augmented vector autoregression models via changes in shock variances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
    12. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    14. Cheng, Tingting & Gao, Jiti & Yan, Yayi, 2019. "Regime switching panel data models with interactive fixed effects," Economics Letters, Elsevier, vol. 177(C), pages 47-51.
    15. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    16. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    17. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    18. Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.

  6. Prosper Dovonon & Silvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2016. "Bootstrapping high-frequency jump tests," CIRANO Working Papers 2016s-24, CIRANO.

    Cited by:

    1. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    2. Yuma Uehara, 2023. "Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 533-565, August.
    3. Barunik, Jozef & Krehlik, Tomas & Vacha, Lukas, 2016. "Modeling and forecasting exchange rate volatility in time-frequency domain," European Journal of Operational Research, Elsevier, vol. 251(1), pages 329-340.
    4. Barunik, Jozef & Vacha, Lukas, 2018. "Do co-jumps impact correlations in currency markets?," Journal of Financial Markets, Elsevier, vol. 37(C), pages 97-119.
    5. Milan Ficura & Jiri Witzany, 2016. "Estimating Stochastic Volatility and Jumps Using High-Frequency Data and Bayesian Methods," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(4), pages 278-301, August.
    6. Markus Bibinger & Nikolaus Hautsch & Alexander Ristig, 2024. "Jump detection in high-frequency order prices," Papers 2403.00819, arXiv.org.
    7. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2016. "Testing for heteroscedasticity in jumpy and noisy high-frequency data: A resampling approach," CREATES Research Papers 2016-27, Department of Economics and Business Economics, Aarhus University.
    8. Jiao, Xiyu & Pretis, Felix & Schwarz, Moritz, 2024. "Testing for coefficient distortion due to outliers with an application to the economic impacts of climate change," Journal of Econometrics, Elsevier, vol. 239(1).
    9. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    10. Baruník Jozef & Fišer Pavel, 2024. "Co-Jumping of Treasury Yield Curve Rates," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(3), pages 481-506.
    11. Ulrich Hounyo & Rasmus T. Varneskov, 2018. "Inference for Local Distributions at High Sampling Frequencies: A Bootstrap Approach," CREATES Research Papers 2018-16, Department of Economics and Business Economics, Aarhus University.
    12. Zhang, Chuanhai & Liu, Zhi & Liu, Qiang, 2021. "Jumps at ultra-high frequency: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    13. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.

  7. Silvia Goncalves & Michael W. McCracken & Benoit Perron, 2015. "Tests of Equal Accuracy for Nested Models with Estimated Factors," Working Papers 2015-25, Federal Reserve Bank of St. Louis.

    Cited by:

    1. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    2. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    3. Arabinda Basistha, 2023. "Estimation of short‐run predictive factor for US growth using state employment data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 34-50, January.
    4. Luiz Renato Lima & Lucas Lúcio Godeiro & Mohammed Mohsin, 2021. "Time-Varying Dictionary and the Predictive Power of FED Minutes," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 149-181, January.
    5. Luca Margaritella & Ovidijus Stauskas, 2024. "New Tests of Equal Forecast Accuracy for Factor-Augmented Regressions with Weaker Loadings," Papers 2409.20415, arXiv.org, revised Jul 2025.
    6. Marine Carrasco & Barbara Rossi, 2016. "In-Sample Inference and Forecasting in Misspecified Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 313-338, July.
    7. Andreou, Elena & Ghysels, Eric, 2021. "Predicting the VIX and the volatility risk premium: The role of short-run funding spreads Volatility Factors," Journal of Econometrics, Elsevier, vol. 220(2), pages 366-398.
    8. Arabinda Basistha & Richard Startz, 2024. "Measuring persistent global economic factors with output, commodity price, and commodity currency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2860-2885, November.
    9. Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
    10. Fosten, Jack, 2017. "Confidence intervals in regressions with estimated factors and idiosyncratic components," Economics Letters, Elsevier, vol. 157(C), pages 71-74.
    11. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    12. Antoine A. Djogbenou, 2017. "Model Selection In Factor-augmented Regressions With Estimated Factors," Working Paper 1391, Economics Department, Queen's University.
    13. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    14. Luiz Renato Lima & Lucas Lúcio Godeiro, 2023. "Equity‐premium prediction: Attention is all you need," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 105-122, January.
    15. Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
    16. In Choi & Hanbat Jeong, 2020. "Differencing versus nondifferencing in factor‐based forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 728-750, September.
    17. Daniel Borup & Martin Thyrsgaard, 2017. "Statistical tests for equal predictive ability across multiple forecasting methods," CREATES Research Papers 2017-19, Department of Economics and Business Economics, Aarhus University.
    18. Michael W. McCracken, 2020. "Tests of Conditional Predictive Ability: Existence, Size, and Power," Working Papers 2020-050, Federal Reserve Bank of St. Louis.
    19. Alessandro Morico & Ovidijus Stauskas, 2025. "Robust Tests for Factor-Augmented Regressions with an Application to the novel EA-MD Dataset," Papers 2504.08455, arXiv.org.

  8. Antoine Djogbenou & Silvia Gonçalves & Benoit Perron, 2015. "Bootstrap inference in regressions with estimated factors and serial correlation," CIRANO Working Papers 2015s-20, CIRANO.

    Cited by:

    1. Stauskas, Ovidijus & De Vos, Ignace, 2024. "Handling Distinct Correlated Effects with CCE," MPRA Paper 120194, University Library of Munich, Germany.
    2. Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2017. "Bootstrap Prediction Intervals for Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 53-69, January.
    3. GONÇALVES, Sílvia & PERRON, Benoit, 2018. "Bootstrapping factor models with cross sectional dependence," Cahiers de recherche 2018-07, Universite de Montreal, Departement de sciences economiques.
    4. Djogbenou, Antoine & Sufana, Razvan, 2024. "Tests for group-specific heterogeneity in high-dimensional factor models," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    5. Fosten, Jack, 2017. "Confidence intervals in regressions with estimated factors and idiosyncratic components," Economics Letters, Elsevier, vol. 157(C), pages 71-74.
    6. Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
    7. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    8. Yohei Yamamoto & Naoko Hara, 2022. "Identifying factor‐augmented vector autoregression models via changes in shock variances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
    9. Antoine A. Djogbenou, 2017. "Model Selection In Factor-augmented Regressions With Estimated Factors," Working Paper 1391, Economics Department, Queen's University.
    10. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    11. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    12. Antoine A. Djogbenou, 2020. "Comovements in the real activity of developed and emerging economies: A test of global versus specific international factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 344-370, April.
    13. Maldonado, Javier & Ruiz Ortega, Esther, 2017. "Accurate Subsampling Intervals of Principal Components Factors," DES - Working Papers. Statistics and Econometrics. WS 23974, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    15. Lixiong Yang, 2020. "State-dependent biases and the quality of China’s preliminary GDP announcements," Empirical Economics, Springer, vol. 59(6), pages 2663-2687, December.
    16. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).

  9. Prosper Dovonon & Silvia Gonçalves, 2014. "Bootstrapping the GMM overidentification test Under first-order underidentification," CIRANO Working Papers 2014s-25, CIRANO.

    Cited by:

    1. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    2. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    3. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    4. Prosper Dovonon & Alastair Hall, 2018. "The Asymptotic Properties of GMM and Indirect Inference under Second-order Identification," CIRANO Working Papers 2018s-37, CIRANO.
    5. Prosper Dovonon & Alastair R. Hall, 2017. "The Asymptotic Properties of GMM and Indirect Inference Under Second-Order Identification," Economics Discussion Paper Series 1705, Economics, The University of Manchester.
    6. Dovonon, Prosper & Hall, Alastair R., 2018. "The asymptotic properties of GMM and indirect inference under second-order identification," Journal of Econometrics, Elsevier, vol. 205(1), pages 76-111.
    7. Sentana, Enrique, 2024. "Finite underidentification," Journal of Econometrics, Elsevier, vol. 240(1).
    8. Woosik Gong & Myung Hwan Seo, 2022. "Bootstraps for Dynamic Panel Threshold Models," Papers 2211.04027, arXiv.org, revised Jul 2025.
    9. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    10. Mandasari, Putriesti & Luckstead, Jeff, 2025. "Examining the nexus between exporting status and CO2 productivity in Indonesian agri-based manufacturing," Energy Economics, Elsevier, vol. 143(C).
    11. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    12. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    13. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    14. Sentana, Enrique, 2025. "Reprint of: Finite underidentification," Journal of Econometrics, Elsevier, vol. 248(C).
    15. Bing Su & Fukang Zhu & Ke Zhu, 2023. "Statistical inference for the logarithmic spatial heteroskedasticity model with exogenous variables," Papers 2301.06658, arXiv.org.
    16. Chen, Qihui & Fang, Zheng, 2019. "Inference on functionals under first order degeneracy," Journal of Econometrics, Elsevier, vol. 210(2), pages 459-481.
    17. Giovanni Angelini & Giuseppe Cavaliere & Luca Fanelli, 2022. "Bootstrap inference and diagnostics in state space models: With applications to dynamic macro models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 3-22, January.
    18. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.

  10. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    2. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    3. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    4. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    5. Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017. "Edgeworth expansion for the pre-averaging estimator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
    6. Meng, Bo & Vijh, Anand M., 2021. "Stock merger activity and industry performance," Journal of Banking & Finance, Elsevier, vol. 129(C).

  11. Ulrich Hounyo & Sílvia Goncalves & Nour Meddahi, 2013. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CREATES Research Papers 2013-28, Department of Economics and Business Economics, Aarhus University.

    Cited by:

    1. Giuseppe Cavaliere & Iliyan Georgiev, 2019. "Inference under random limit bootstrap measures," Papers 1911.12779, arXiv.org, revised Dec 2019.
    2. Dovonon, Prosper & Taamouti, Abderrahim & Williams, Julian, 2022. "Testing the eigenvalue structure of spot and integrated covariance," Journal of Econometrics, Elsevier, vol. 229(2), pages 363-395.
    3. Ulrich Hounyo, 2014. "The wild tapered block bootstrap," CREATES Research Papers 2014-32, Department of Economics and Business Economics, Aarhus University.
    4. Mohamed Doukali & Xiaojun Song & Abderrahim Taamouti, 2022. "Value-at Risk under Measurement Error," Working Papers 202209, University of Liverpool, Department of Economics.
    5. Zongwu Cai & Chaoqun Ma & Xianhua Mi, 2020. "Realized Volatility Forecasting Based on Dynamic Quantile Model Averaging," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202016, University of Kansas, Department of Economics, revised Sep 2020.
    6. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    7. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    8. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    9. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    10. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    11. Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
    12. Hounyo, Ulrich & Liu, Zhi & Varneskov, Rasmus T., 2025. "A modified wild bootstrap procedure for Laplace transforms of volatility," Economics Letters, Elsevier, vol. 247(C).
    13. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.

  12. Silvia Gonçalves & Benoit Perron, 2012. "Bootstrapping factor-augmented regression models," CIRANO Working Papers 2012s-12, CIRANO.

    Cited by:

    1. Sium Bodha Hannadige & Jiti Gao & Mervyn J Silvapulle & Param Silvapulle, 2021. "Time Series Forecasting Using a Mixture of Stationary and Nonstationary Predictors," Monash Econometrics and Business Statistics Working Papers 6/21, Monash University, Department of Econometrics and Business Statistics.
    2. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    3. Bicu, A.C. & Lieb, L.M., 2015. "Cross-border effects of fiscal policy in the Eurozone," Research Memorandum 019, Maastricht University, Graduate School of Business and Economics (GSBE).
    4. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
    5. Stauskas, Ovidijus & De Vos, Ignace, 2024. "Handling Distinct Correlated Effects with CCE," MPRA Paper 120194, University Library of Munich, Germany.
    6. Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.
    7. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
    8. Huang, Haitao & Jiang, Lei & Leng, Xuan & Peng, Liang, 2023. "Bootstrap analysis of mutual fund performance," Journal of Econometrics, Elsevier, vol. 235(1), pages 239-255.
    9. González-Rivera, Gloria & Ruiz Ortega, Esther & Maldonado, Javier, 2018. "Growth in Stress," DES - Working Papers. Statistics and Econometrics. WS 26623, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2017. "Bootstrap Prediction Intervals for Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 53-69, January.
    11. Bai, Jushan & Han, Xu & Shi, Yutang, 2020. "Estimation and inference of change points in high-dimensional factor models," Journal of Econometrics, Elsevier, vol. 219(1), pages 66-100.
    12. GONÇALVES, Sílvia & PERRON, Benoit, 2018. "Bootstrapping factor models with cross sectional dependence," Cahiers de recherche 2018-07, Universite de Montreal, Departement de sciences economiques.
    13. Eibinger, Tobias & Deixelberger, Beate & Manner, Hans, 2024. "Panel data in environmental economics: Econometric issues and applications to IPAT models," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    14. Zongwu Cai & Xiyuan Liu, 2021. "Solving the Price Puzzle Via A Functional Coefficient Factor-Augmented VAR Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202106, University of Kansas, Department of Economics, revised Jan 2021.
    15. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," LSE Research Online Documents on Economics 88110, London School of Economics and Political Science, LSE Library.
    16. Laura Battaglia & Timothy Christensen & Stephen Hansen & Szymon Sacher, 2024. "Inference for Regression with Variables Generated by AI or Machine Learning," Papers 2402.15585, arXiv.org, revised Apr 2025.
    17. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
    18. Ashoka Mody & Milan Nedeljkovic, 2018. "Central Bank Policies and Financial Markets: Lessons from the Euro Crisis," Working Papers 253, Princeton University, Department of Economics, Center for Economic Policy Studies..
    19. YAMAMOTO, Yohei & 山本, 庸平, 2016. "Bootstrap Inference for Impulse Response Functions in Factor-Augmented Vector Autoregressions," Discussion paper series HIAS-E-26, Hitotsubashi Institute for Advanced Study, Hitotsubashi University.
    20. Fosten, Jack, 2017. "Confidence intervals in regressions with estimated factors and idiosyncratic components," Economics Letters, Elsevier, vol. 157(C), pages 71-74.
    21. Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
    22. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
    23. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    24. Yohei Yamamoto & Naoko Hara, 2022. "Identifying factor‐augmented vector autoregression models via changes in shock variances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 722-745, June.
    25. Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024. "Confidence intervals of treatment effects in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 240(1).
    26. Knut Are Aastveit & Hilde C. Bjornland, 2013. "What drives oil prices? Emerging versus developed economies," CAMA Working Papers 2013-11, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    27. Antoine A. Djogbenou, 2017. "Model Selection In Factor-augmented Regressions With Estimated Factors," Working Paper 1391, Economics Department, Queen's University.
    28. Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    29. Andreou, E. & Gagliardini, P. & Ghysels, E. & Rubin, M., 2025. "Spanning latent and observable factors," Journal of Econometrics, Elsevier, vol. 248(C).
    30. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    31. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    32. Beyhum, Jad & Striaukas, Jonas, 2024. "Testing for sparse idiosyncratic components in factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 244(1).
    33. Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
    34. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    35. Antoine A. Djogbenou, 2020. "Comovements in the real activity of developed and emerging economies: A test of global versus specific international factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(3), pages 344-370, April.
    36. Maldonado, Javier & Ruiz Ortega, Esther, 2017. "Accurate Subsampling Intervals of Principal Components Factors," DES - Working Papers. Statistics and Econometrics. WS 23974, Universidad Carlos III de Madrid. Departamento de Estadística.
    37. Mingjing Chen, 2021. "Tests for the explanatory power of latent factors," Statistical Papers, Springer, vol. 62(6), pages 2825-2856, December.
    38. In Choi & Hanbat Jeong, 2020. "Differencing versus nondifferencing in factor‐based forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 728-750, September.
    39. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    40. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    41. Jack Fosten, 2016. "Model selection with factors and variables," University of East Anglia School of Economics Working Paper Series 2016-07, School of Economics, University of East Anglia, Norwich, UK..
    42. Marc K. Chan & Simon S. Kwok, 2022. "The PCDID Approach: Difference-in-Differences When Trends Are Potentially Unparallel and Stochastic," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1216-1233, June.
    43. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2019. "Testing for Correlated Factor Loadings in Cross Sectionally Dependent Panels," SERIES 02-2019, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Jun 2019.
    44. Ashoka Mody & Milan Nedeljkovic, 2018. "Central Bank Policies and Financial Markets: Lessons from the Euro Crisis," CESifo Working Paper Series 7400, CESifo.
    45. Sium Bodha Hannadige & Jiti Gao & Mervyn J. Silvapulle & Param Silvapulle, 2020. "Forecasting a Nonstationary Time Series with a Mixture of Stationary and Nonstationary Factors as Predictors," Monash Econometrics and Business Statistics Working Papers 19/20, Monash University, Department of Econometrics and Business Statistics.
    46. Bai, Jushan & Li, Kunpeng & Lu, Lina, 2014. "Estimation and inference of FAVAR models," MPRA Paper 60960, University Library of Munich, Germany.
    47. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
    48. Masud Alam, 2024. "Output, employment, and price effects of U.S. narrative tax changes: a factor-augmented vector autoregression approach," Empirical Economics, Springer, vol. 67(4), pages 1421-1471, October.
    49. Jack Fosten, 2016. "Forecast evaluation with factor-augmented models," University of East Anglia School of Economics Working Paper Series 2016-05, School of Economics, University of East Anglia, Norwich, UK..
    50. Shintani, Mototsugu & Guo, Zi-Yi, 2011. "Finite Sample Performance of Principal Components Estimators for Dynamic Factor Models: Asymptotic vs. Bootstrap Approximations," EconStor Preprints 167627, ZBW - Leibniz Information Centre for Economics.
    51. Leif Anders Thorsrud, 2013. "Global and regional business cycles. Shocks and propagations," Working Paper 2013/08, Norges Bank.
    52. Tian Xie, 2025. "Automatic Inference for Value-Added Regressions," Papers 2503.19178, arXiv.org.
    53. Antoine A. Djogbenou, 2024. "Identifying oil price shocks with global, developed, and emerging latent real economy activity factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 128-149, January.

  13. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.

    Cited by:

    1. Dovonon, Prosper & Taamouti, Abderrahim & Williams, Julian, 2022. "Testing the eigenvalue structure of spot and integrated covariance," Journal of Econometrics, Elsevier, vol. 229(2), pages 363-395.
    2. Peter R. Hansen & Asger Lunde & Valeri Voev, 2010. "Realized Beta GARCH: A Multivariate GARCH Model with Realized Measures of Volatility and CoVolatility," CREATES Research Papers 2010-74, Department of Economics and Business Economics, Aarhus University.
    3. Li, Jia & Todorov, Viktor & Tauchen, George & Chen, Rui, 2017. "Mixed-scale jump regressions with bootstrap inference," Journal of Econometrics, Elsevier, vol. 201(2), pages 417-432.
    4. Vincenzo Candila, 2013. "A Comparison of the Forecasting Performances of Multivariate Volatility Models," Working Papers 3_228, Dipartimento di Scienze Economiche e Statistiche, Università degli Studi di Salerno.
    5. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    6. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    7. Michela Verardo & Andrew Patton, 2009. "Does Beta Move with News? Systematic Risk and Firm-Specific Information Flows," FMG Discussion Papers dp630, Financial Markets Group.
    8. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    9. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    10. Hwang, Eunju & Shin, Dong Wan, 2014. "A bootstrap test for jumps in financial economics," Economics Letters, Elsevier, vol. 125(1), pages 74-78.
    11. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    12. Matteo Bonato & Luca Taschini, 2016. "Comovement and the financialization of commodities," GRI Working Papers 215, Grantham Research Institute on Climate Change and the Environment.
    13. Fresoli, Diego Eduardo & Ruiz Ortega, Esther, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," DES - Working Papers. Statistics and Econometrics. WS ws140202, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Golosnoy, Vasyl & Schmid, Wolfgang & Seifert, Miriam Isabel & Lazariv, Taras, 2020. "Statistical inferences for realized portfolio weights," Econometrics and Statistics, Elsevier, vol. 14(C), pages 49-62.
    15. BAUWENS, Luc & STORTI, Giuseppe, 2013. "Computationally efficient inference procedures for vast dimensional realized covariance models," LIDAM Reprints CORE 2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Liu, Li & Bu, Ruijun & Pan, Zhiyuan & Xu, Yuhua, 2019. "Are financial returns really predictable out-of-sample?: Evidence from a new bootstrap test," Economic Modelling, Elsevier, vol. 81(C), pages 124-135.
    17. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    18. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    19. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    20. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    21. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.
    22. Hacène Djellout & Arnaud Guillin & Yacouba Samoura, 2017. "Large Deviations Of The Realized (Co-)Volatility Vector," Post-Print hal-01082903, HAL.

  14. Silvia Goncalves & Massimo Guidolin, 2005. "Predictable dynamics in the S&P 500 index options implied volatility surface," Working Papers 2005-010, Federal Reserve Bank of St. Louis.

    Cited by:

    1. Fearghal Kearney & Han Lin Shang & Lisa Sheenan, 2019. "Implied volatility surface predictability: the case of commodity markets," Papers 1909.11009, arXiv.org.
    2. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    3. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the Term Structure of Option Implied Volatility: The Power of an Adaptive Method," IRTG 1792 Discussion Papers 2018-046, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
    5. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    6. Francesco Audrino & Dominik Colagelo, 2007. "Forecasting Implied Volatility Surfaces," University of St. Gallen Department of Economics working paper series 2007 2007-42, Department of Economics, University of St. Gallen.
    7. Bernales, Alejandro & Chen, Louisa & Valenzuela, Marcela, 2017. "Learning and forecasts about option returns through the volatility risk premium," Journal of Economic Dynamics and Control, Elsevier, vol. 82(C), pages 312-330.
    8. Liu, Xialu & Xiao, Han & Chen, Rong, 2016. "Convolutional autoregressive models for functional time series," Journal of Econometrics, Elsevier, vol. 194(2), pages 263-282.
    9. Georgios Chalamandaris & Andrianos Tsekrekos, 2013. "Explanatory Factors and Causality in the Dynamics of Volatility Surfaces Implied from OTC Asian–Pacific Currency Options," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 327-358, March.
    10. Guo, Biao & Han, Qian & Lin, Hai, 2015. "Forecasting the Term Structure of Implied Volatilities," Working Paper Series 20148, Victoria University of Wellington, School of Economics and Finance.
    11. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    12. Chunbo Liu & Cheng Zhang & Zhiping Zhou, 2018. "From funding liquidity to market liquidity: Evidence from the index options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(10), pages 1189-1205, October.
    13. Le, Van & Zurbruegg, Ralf, 2014. "Forecasting option smile dynamics," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 32-45.
    14. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2011. "How important is the term structure in implied volatility surface modeling? Evidence from foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 30(4), pages 623-640, June.
    15. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    16. Michel van der Wel & Sait R. Ozturk & Dick van Dijk, 2015. "Dynamic Factor Models for the Volatility Surface," CREATES Research Papers 2015-13, Department of Economics and Business Economics, Aarhus University.
    17. Mihir Dash, 2019. "Modeling of implied volatility surfaces of nifty index options," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 6(03), pages 1-11, September.
    18. Le, Van & Zurbruegg, Ralf, 2010. "The role of trading volume in volatility forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 533-555, December.
    19. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.
    20. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.
    21. Eirini Konstantinidi & George Skiadopoulos, 2014. "How Does the Market Variance Risk Premium Vary over Time? Evidence from S&P 500 Variance Swap Investment Returns," Working Papers 732, Queen Mary University of London, School of Economics and Finance.
    22. Yue, Tian & Li, Lu-Lu & Ruan, Xinfeng & Zhang, Jin E., 2024. "Smirking in the energy market: Evidence from the Chinese crude oil options market," International Review of Financial Analysis, Elsevier, vol. 96(PA).
    23. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    24. Pascal François & Rémi Galarneau‐Vincent & Geneviève Gauthier & Frédéric Godin, 2022. "Venturing into uncharted territory: An extensible implied volatility surface model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1912-1940, October.
    25. Markopoulou, Chryssa & Skintzi, Vasiliki & Refenes, Apostolos, 2016. "On the predictability of model-free implied correlation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 527-547.
    26. Chen, Ding & Guo, Biao & Zhou, Guofu, 2023. "Firm fundamentals and the cross-section of implied volatility shapes," Journal of Financial Markets, Elsevier, vol. 63(C).
    27. Wang, Jinzhong & Chen, Shijiang & Tao, Qizhi & Zhang, Ting, 2017. "Modelling the implied volatility surface based on Shanghai 50ETF options," Economic Modelling, Elsevier, vol. 64(C), pages 295-301.
    28. Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.
    29. Jia, Xiaolan & Ruan, Xinfeng & Zhang, Jin E., 2023. "Carr and Wu’s (2020) framework in the oil ETF option market," Journal of Commodity Markets, Elsevier, vol. 31(C).
    30. Shao, Hualu & Zhou, Baicheng & Gong, Shaoqing, 2025. "Prediction of the implied volatility surface–An empirical analysis of the SSE 50ETF option based on CNNs," Finance Research Letters, Elsevier, vol. 77(C).
    31. George Kapetanios & Michael Neumann & George Skiadopoulos, 2014. "Jumps in Option Prices and Their Determinants: Real-time Evidence from the E-mini S&P 500 Option Market," Working Papers 730, Queen Mary University of London, School of Economics and Finance.
    32. Alejandro Bernales & Diether W. Beuermann & Gonzalo Cortazar, 2014. "Thinly traded securities and risk management," Estudios de Economia, University of Chile, Department of Economics, vol. 41(1 Year 20), pages 5-48, June.
    33. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    34. Biao Guo & Qian Han & Hai Lin, 2018. "Are there gains from using information over the surface of implied volatilities?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 645-672, June.
    35. Shi, Yukun & Stasinakis, Charalampos & Xu, Yaofei & Yan, Cheng, 2022. "Market co-movement between credit default swap curves and option volatility surfaces," International Review of Financial Analysis, Elsevier, vol. 82(C).
    36. Doshi, Hitesh & Ericsson, Jan & Fournier, Mathieu & Seo, Sang Byung, 2024. "The risk and return of equity and credit index options," Journal of Financial Economics, Elsevier, vol. 161(C).
    37. Georgios Chalamandaris & Andrianos Tsekrekos, 2010. "The correlation structure of FX option markets before and since the financial crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 20(1-2), pages 73-84.
    38. Andrada-Félix, Julián & Fernández-Rodríguez, Fernando & Fuertes, Ana-Maria, 2016. "Combining nearest neighbor predictions and model-based predictions of realized variance: Does it pay?," International Journal of Forecasting, Elsevier, vol. 32(3), pages 695-715.
    39. Jiayi Luo & Cindy Long Yu, 2023. "The Application of Symbolic Regression on Identifying Implied Volatility Surface," Mathematics, MDPI, vol. 11(9), pages 1-28, April.
    40. Massimo Guidolin & Kai Wang, 2022. "The Empirical Performance of Option Implied Volatility Surface-Driven Optimal Portfolios," BAFFI CAREFIN Working Papers 22190, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    41. Yue, Tian & Gehricke, Sebastian A. & Zhang, Jin E. & Pan, Zheyao, 2021. "The implied volatility smirk in the Chinese equity options market," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    42. Bedendo, Mascia & Hodges, Stewart D., 2009. "The dynamics of the volatility skew: A Kalman filter approach," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1156-1165, June.
    43. Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.
    44. Xiaolan Jia & Xinfeng Ruan & Jin E. Zhang, 2021. "The implied volatility smirk of commodity options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 72-104, January.
    45. Jiahao Weng & Yan Xie, 2024. "Degree of Irrationality: Sentiment and Implied Volatility Surface," Papers 2405.11730, arXiv.org.
    46. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    47. Goulas, Lambros & Skiadopoulos, George, 2012. "Are freight futures markets efficient? Evidence from IMAREX," International Journal of Forecasting, Elsevier, vol. 28(3), pages 644-659.
    48. Helena Chuliá & Hipòlit Torró, 2008. "The economic value of volatility transmission between the stock and bond markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1066-1094, November.
    49. Pham, Linh & Do, Hung Xuan, 2022. "Green bonds and implied volatilities: Dynamic causality, spillovers, and implications for portfolio management," Energy Economics, Elsevier, vol. 112(C).
    50. Zihao Chen & Yuyang Li & Cindy Long Yu, 2024. "Modeling Implied Volatility Surface Using B-Splines with Time-Dependent Coefficients Predicted by Tree-Based Machine Learning Methods," Mathematics, MDPI, vol. 12(7), pages 1-30, April.
    51. Quaye, Enoch & Tunaru, Radu, 2022. "The stock implied volatility and the implied dividend volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    52. Cortazar, Gonzalo & Beuermann, Diether & Bernales, Alejandro, 2013. "Risk Management with Thinly Traded Securities: Methodology and Implementation," IDB Publications (Working Papers) 4647, Inter-American Development Bank.
    53. Lim, Kian Guan & Chen, Ying & Yap, Nelson K.L., 2019. "Intraday information from S&P 500 Index futures options," Journal of Financial Markets, Elsevier, vol. 42(C), pages 29-55.

  15. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.

    Cited by:

    1. A. Gabrielsen & P. Zagaglia & A. Kirchner & Z. Liu, 2012. "Forecasting Value-at-Risk with Time-Varying Variance, Skewness and Kurtosis in an Exponential Weighted Moving Average Framework," Papers 1206.1380, arXiv.org.
    2. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    3. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 281-313, Spring.
    4. Wasel Shadat, 2011. "On the Nonparametric Tests of Univariate GARCH Regression Models," Economics Discussion Paper Series 1115, Economics, The University of Manchester.
    5. Dannenberg, Henry, 2011. "The Importance of Estimation Uncertainty in a Multi-Rating Class Loan Portfolio," IWH Discussion Papers 11/2011, Halle Institute for Economic Research (IWH).
    6. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    7. Hasan Mahmoud & Vian Ahmed & Salwa Beheiry, 2021. "Construction Cash Flow Risk Index," JRFM, MDPI, vol. 14(6), pages 1-17, June.
    8. Giuseppe Storti & Luc Bauwens, 2006. "A component GARCH model with time varying weights," Computing in Economics and Finance 2006 388, Society for Computational Economics.
    9. Silvia Stanescu & Radu Tunaru, 2013. "Quantifying the uncertainty in VaR and expected shortfall estimates," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 15, pages 357-372, Edward Elgar Publishing.
    10. Genest, Benoit & Cao, Zhili, 2014. "Value-at-Risk in turbulence time," MPRA Paper 62906, University Library of Munich, Germany.
    11. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
    12. Chen, Yi-Hsuan & Tu, Anthony H., 2013. "Estimating hedged portfolio value-at-risk using the conditional copula: An illustration of model risk," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 514-528.
    13. Nieto, María Rosa & Ruiz Ortega, Esther, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. International Monetary Fund, 2014. "Switzerland: Technical Note-Systemic Risk and Contagion Analysis," IMF Staff Country Reports 2014/268, International Monetary Fund.
    15. Nieto, María Rosa & Ruiz Ortega, Esther, 2010. "Bootstrap prediction intervals for VaR and ES in the context of GARCH models," DES - Working Papers. Statistics and Econometrics. WS ws102814, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. Imola Drigă, 2012. "Financial Risks Analysis For A Commercial Bank In The Romanian Banking System," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 1(14), pages 1-14.

  16. Silvia Gonçalves & Lutz Kilian, 2003. "Asymptotic and Bootstrap Inference for AR( Infinite ) Processes with Conditional Heteroskedasticity," CIRANO Working Papers 2003s-28, CIRANO.

    Cited by:

    1. Kilian, Lutz & Gonçalves, Sílvia, 2002. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," Discussion Paper Series 1: Economic Studies 2002,26, Deutsche Bundesbank.
    2. Tommaso Proietti & Alessandro Giovannelli, 2018. "A Durbin–Levinson regularized estimator of high-dimensional autocovariance matrices," Biometrika, Biometrika Trust, vol. 105(4), pages 783-795.
    3. Bauer, Dietmar, 2009. "Estimating ARMAX systems for multivariate time series using the state approach to subspace algorithms," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 397-421, March.
    4. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    5. Serguei Zernov & Victoria Zindle-Walsh & John Galbraith, 2006. "Asymptotics For Estimation Of Truncated Infinite-Dimensional Quantile Regressions," Departmental Working Papers 2006-16, McGill University, Department of Economics.
    6. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2009. "Co-integration rank tests under conditional heteroskedasticity," Discussion Papers 09/02, University of Nottingham, Granger Centre for Time Series Econometrics.

  17. Silvia Gonçalves & Lutz Kilian, 2003. "Bootstrapping Autoregressions with Conditional Heteroskedasticity of Unknown Form," CIRANO Working Papers 2003s-17, CIRANO.

    Cited by:

    1. Mario Alloza, 2017. "Is fiscal policy more effective in uncertain times or during recessions?," Working Papers 1730, Banco de España.
    2. Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
    3. Maxime Phillot & Samuel Reynard, 2021. "Monetary policy financial transmission and treasury liquidity premia," Working Papers 2021-14, Swiss National Bank.
    4. Abhay Abhyankar, Bing Xu, and Jiayue Wang, 2013. "Oil Price Shocks and the Stock Market: Evidence from Japan," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Escanciano, Juan Carlos & Velasco, Carlos, 2003. "Generalized spectral tests for the martingale difference hypothesis," DES - Working Papers. Statistics and Econometrics. WS ws035312, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. Baglan, Deniz & Ege Yazgan, M. & Yilmazkuday, Hakan, 2016. "Relative price variability and inflation: New evidence," Journal of Macroeconomics, Elsevier, vol. 48(C), pages 263-282.
    7. Désirée I Christofzik & Steffen Elstner, 2021. "International spillover effects of U.S. tax reforms: evidence from Germany," Oxford Economic Papers, Oxford University Press, vol. 73(2), pages 578-600.
    8. Yang Hu, 2023. "A review of Phillips‐type right‐tailed unit root bubble detection tests," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 141-158, February.
    9. Daiki Maki, 2015. "Wild bootstrap tests for unit root in ESTAR models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 475-490, September.
    10. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    11. Yuriy Gorodnichenko & Byoungchan Lee, 2017. "A Note on Variance Decomposition with Local Projections," NBER Working Papers 23998, National Bureau of Economic Research, Inc.
    12. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    13. Steffen Elstner & Lars P. Feld & Christoph M. Schmidt, 2018. "The German Productivity Paradox - Facts and Explanations," CESifo Working Paper Series 7231, CESifo.
    14. Rüth, Sebastian K., 2018. "Fiscal stimulus and systematic monetary policy: Postwar evidence for the United States," Economics Letters, Elsevier, vol. 173(C), pages 92-96.
    15. Giuseppe Cavaliere & Morten Ørregaard Nielsen & Robert Taylor, 2017. "Quasi-Maximum Likelihood Estimation and Bootstrap Inference in Fractional Time Series Models with Heteroskedasticity of Unknown Form," CREATES Research Papers 2017-02, Department of Economics and Business Economics, Aarhus University.
    16. Stan Hurn & Ralf Becker, 2006. "Testing for nonlinearity in mean in the presence of heteroskedasticity," Stan Hurn Discussion Papers 2006-02, School of Economics and Finance, Queensland University of Technology.
    17. Lütkepohl, Helmut & Schlaak, Thore, 2019. "Bootstrapping impulse responses of structural vector autoregressive models identified through GARCH," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 41-61.
    18. Terasvirta, Timo & Yang, Yukai, 2014. "Linearity and misspecification tests for vector smooth transition regression models," LIDAM Discussion Papers CORE 2014061, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Helmut Lütkepohl & Till Strohsal, 2025. "Time-Varying Shock Transmission in Non-Gaussian Structural Vector Autoregressions," Discussion Papers of DIW Berlin 2110, DIW Berlin, German Institute for Economic Research.
    20. Russell Davidson & James G. MacKinnon, 2007. "Wild Bootstrap Tests For Iv Regression," Departmental Working Papers 2007-14, McGill University, Department of Economics.
    21. Cho, Dooyeon, 2015. "The role of covered interest parity in explaining the forward premium anomaly within a nonlinear panel framework," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 229-238.
    22. Karel Mertens & Morten O. Ravn, 2018. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States: Reply to Jentsch and Lunsford," Working Papers 1805, Federal Reserve Bank of Dallas.
    23. Martin Enilov & Yuan Wang, 2022. "Tourism and economic growth: Multi-country evidence from mixed-frequency Granger causality tests," Tourism Economics, , vol. 28(5), pages 1216-1239, August.
    24. David S. Jacks & Martin Stuermer, 2016. "What drives commodity price booms and busts?," Working Papers 1614, Federal Reserve Bank of Dallas.
    25. Corradi, Valentina & Iglesias, Emma M., 2008. "Bootstrap refinements for QML estimators of the GARCH(1,1) parameters," Journal of Econometrics, Elsevier, vol. 144(2), pages 500-510, June.
    26. Eichengreen, Barry & Mody, Ashoka & Nedeljkovic, Milan & Sarno, Lucio, 2012. "How the Subprime Crisis went global: Evidence from bank credit default swap spreads," Journal of International Money and Finance, Elsevier, vol. 31(5), pages 1299-1318.
    27. Bastianin, Andrea & Conti, Francesca & Manera, Matteo, 2016. "The Impacts of Oil Price Shocks on Stock Market Volatility: Evidence from the G7 Countries," Energy: Resources and Markets 230682, Fondazione Eni Enrico Mattei (FEEM).
    28. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    29. Bulat Gafarov & Madina Karamysheva & Andrey Polbin & Anton Skrobotov, 2024. "Wild inference for wild SVARs with application to heteroscedasticity-based IV," Papers 2407.03265, arXiv.org, revised Nov 2024.
    30. Beutner, Eric & Heinemann, Alexander & Smeekes, Stephan, 2024. "A residual bootstrap for conditional Value-at-Risk," Journal of Econometrics, Elsevier, vol. 238(2).
    31. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    32. Umair Khalil & Alamgir & Amjad Ali & Dost Muhammad Khan & Sajjad Ahmad Khan & Zardad Khan, 2016. "Unit Root Testing and Estimation in Nonlinear ESTAR Models with Normal and Non-Normal Errors," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-11, November.
    33. Silvia Miranda-Agrippino, 2016. "Unsurprising shocks: information, premia, and the monetary transmission," Bank of England working papers 626, Bank of England.
    34. Karel Mertens & José Luis Montiel Olea, 2018. "Marginal Tax Rates and Income: New Time Series Evidence," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(4), pages 1803-1884.
    35. Chang, Tsangyao & Hsu, Chen-Min & Chen, Sheng-Tung & Wang, Mei-Chih & Wu, Cheng-Feng, 2023. "Revisiting economic growth and CO2 emissions nexus in Taiwan using a mixed-frequency VAR model," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 319-342.
    36. Kang, Wensheng & Ratti, Ronald A., 2013. "Structural oil price shocks and policy uncertainty," Economic Modelling, Elsevier, vol. 35(C), pages 314-319.
    37. Dong Jin Lee, 2021. "Bootstrap tests for structural breaks when the regressors and the serially correlated error term are unstable," Bulletin of Economic Research, Wiley Blackwell, vol. 73(2), pages 212-229, April.
    38. Goodhart, Charles & Hofmann, Boris, 2008. "House Prices, Money, Credit and the Macroeconomy," Working Paper Series 888, European Central Bank.
    39. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2020. "Testing a large set of zero restrictions in regression models, with an application to mixed frequency Granger causality," Journal of Econometrics, Elsevier, vol. 218(2), pages 633-654.
    40. Martin Enilov, 2024. "The predictive power of commodity prices for future economic growth: Evaluating the role of economic development," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3040-3062, July.
    41. Lutz Kilian & Logan T. Lewis, 2011. "Does the Fed Respond to Oil Price Shocks?," Economic Journal, Royal Economic Society, vol. 121(555), pages 1047-1072, September.
    42. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    43. Stürmer, Martin, 2013. "150 years of boom and bust: what drives mineral commodity prices?," IDOS Discussion Papers 5/2013, German Institute of Development and Sustainability (IDOS).
    44. David O. Cushman, 2012. "Mankiw vs. DeLong and Krugman on the CEA's Real GDP Forecasts in Early 2009: What Might a Time Series Econometrician Have Said?," Econ Journal Watch, Econ Journal Watch, vol. 9(3), pages 309-349, September.
    45. Jonas E. Arias & Juan F. Rubio-Ramirez & Daniel F. Waggoner, 2018. "Inference in Bayesian Proxy-SVARs," FRB Atlanta Working Paper 2018-16, Federal Reserve Bank of Atlanta.
    46. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    47. Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2023. "The confidence channel of U.S. financial uncertainty: Evidence from industry-level data," Economic Modelling, Elsevier, vol. 129(C).
    48. Kilian, Lutz & Davis, Lucas W, 2009. "Estimating the Effect of a Gasoline Tax on Carbon Emissions," CEPR Discussion Papers 7161, C.E.P.R. Discussion Papers.
    49. Ji, Philip Inyeob & Kim, Jae H., 2009. "Real interest rate linkages in the Pacific-Basin region," International Review of Economics & Finance, Elsevier, vol. 18(3), pages 440-448, June.
    50. Inoue, Atsushi & Jordà , Òscar & Kuersteiner, Guido, 2024. "Inference for Local Projections," CEPR Discussion Papers 19379, C.E.P.R. Discussion Papers.
    51. Wensheng Kang & Ronald A. Ratti, 2015. "Oil shocks, policy uncertainty and stock returns in China," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 23(4), pages 657-676, October.
    52. Erdenebat Bataa & Denise R. Osborn & Marianne Sensier & Dick van Dijk, 2009. "Changes in International Business Cycle Affiliations," Economics Discussion Paper Series 0924, Economics, The University of Manchester.
    53. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2014. "Inference in VARs with Conditional Heteroskedasticity of Unknown Form," Working Papers 14-21, University of Mannheim, Department of Economics.
    54. Emmanuel Flachaire, 2005. "More efficient tests robust to heteroskedasticity of unknown form," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00175914, HAL.
    55. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    56. Lakdawala, Aeimit, 2016. "Decomposing the Effects of Monetary Policy Using an External Instruments SVAR," MPRA Paper 78254, University Library of Munich, Germany.
    57. Ansgar Belke & Steffen Elstner & Svetlana Rujin, 2022. "Growth Prospects and the Trade Balance in Advanced Economies," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1209-1234, October.
    58. Kilian, Lutz & Murphy, Daniel, 2009. "Why Agnostic Sign Restrictions Are Not Enough: Understanding the Dynamics of Oil Market VAR Models," CEPR Discussion Papers 7471, C.E.P.R. Discussion Papers.
    59. Mertens, Karel & Ravn, Morten O., 2014. "A reconciliation of SVAR and narrative estimates of tax multipliers," Journal of Monetary Economics, Elsevier, vol. 68(S), pages 1-19.
    60. Andrea BASTIANIN & Matteo MANERA, 2015. "How Does Stock Market Volatility React to Oil Shocks?," Departmental Working Papers 2015-09, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    61. Baumeister, Christiane & Kilian, Lutz, 2013. "Do oil price increases cause higher food prices?," CFS Working Paper Series 2013/10, Center for Financial Studies (CFS).
    62. Giraitis, Liudas & Li, Yufei & Phillips, Peter C.B., 2024. "Reprint of: Robust inference on correlation under general heterogeneity," Journal of Econometrics, Elsevier, vol. 244(2).
    63. Monticini, Andrea & Peel, David & Vaciago, Giacomo, 2011. "The impact of ECB and FED announcements on the Euro interest rates," Economics Letters, Elsevier, vol. 113(2), pages 139-142.
    64. Bastianin, Andrea & Lanza, Alessandro & Manera, Matteo, 2018. "Economic impacts of El Niño Southern Oscillation: evidence from the Colombian coffee market," MPRA Paper 89984, University Library of Munich, Germany.
    65. Federico Di Pace & Luciana Juvenal & Ivan Petrella, 2021. "Terms-of-trade shocks are not all alike," Bank of England working papers 901, Bank of England.
    66. Laura Mayoral, 2009. "Heterogeneous dynamics, aggregation and the persistence of economic shocks," UFAE and IAE Working Papers 786.09, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    67. Ioannidis, Christos & Ka, Kook, 2018. "The impact of oil price shocks on the term structure of interest rates," Energy Economics, Elsevier, vol. 72(C), pages 601-620.
    68. Fabrizio Venditti, 2010. "Down the non-linear road from oil to consumer energy prices: no much asymmetry along the way," Temi di discussione (Economic working papers) 751, Bank of Italy, Economic Research and International Relations Area.
    69. Giuseppe Cavaliere & David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2009. "Testing for unit roots in the presence of a possible break in trend and non-stationary volatility," Discussion Papers 09/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    70. Wensheng Kang & Ronald A. Ratti & Kyung Hwan Yoon, 2014. "The Impact of Oil Price Shocks on the Stock Market Return and Volatility Relationship," CAMA Working Papers 2014-71, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    71. Clatworthy, Mark A. & Peel, David A. & Pope, Peter F., 2007. "Evaluating the properties of analysts’ forecasts: A bootstrap approach," The British Accounting Review, Elsevier, vol. 39(1), pages 3-13.
    72. Paul Ho & Thomas A. Lubik & Christian Matthes, 2023. "Averaging Impulse Responses Using Prediction Pools," Working Paper 23-04, Federal Reserve Bank of Richmond.
    73. Andrea Fracasso & Giuseppe Vittucci Marzetti, 2012. "International R&D spillovers, absorptive capacity and relative backwardness: a panel smooth transition regression model," Department of Economics Working Papers 1203, Department of Economics, University of Trento, Italia.
    74. Mehmet Balcilar & George Ike & Rangan Gupta, 2019. "The Role of Economic Policy Uncertainty in Predicting Output Growth in Emerging Markets: A Mixed-Frequency Granger Causality Approach," Working Papers 201975, University of Pretoria, Department of Economics.
    75. Spierdijk, Laura & Umar, Zaghum, 2015. "Stocks, bonds, T-bills and inflation hedging: From great moderation to great recession," Journal of Economics and Business, Elsevier, vol. 79(C), pages 1-37.
    76. Donald W.K. Andrews & Patrik Guggenberger, 2008. "Asymptotics for LS, GLS, and Feasible GLS Statistics in an AR(1) Model with Conditional Heteroskedaticity," Cowles Foundation Discussion Papers 1665, Cowles Foundation for Research in Economics, Yale University.
    77. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Cointegration Rank Testing Under Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1719-1760, December.
    78. Todd E. Clark & Michael W. McCracken, 2010. "Reality checks and nested forecast model comparisons," Working Papers 2010-032, Federal Reserve Bank of St. Louis.
    79. Lütkepohl, Helmut & Netšunajev, Aleksei, 2017. "Structural vector autoregressions with smooth transition in variances," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 43-57.
    80. Gabriele Fiorentini & Enrique Sentana, 2019. "New testing approaches for mean-variance predictability," Working Paper series 19-01, Rimini Centre for Economic Analysis.
    81. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    82. James G. MacKinnon & Russell Davidson, 2006. "Improving The Reliability Of Bootstrap Tests With The Fast Double Bootstrap," Working Paper 1044, Economics Department, Queen's University.
    83. Abhimanyu Gupta & Myung Hwan Seo, 2023. "Robust Inference on Infinite and Growing Dimensional Time‐Series Regression," Econometrica, Econometric Society, vol. 91(4), pages 1333-1361, July.
    84. Lagos, Ricardo & Zhang, Shengxing, 2020. "Turnover liquidity and the transmission of monetary policy," LSE Research Online Documents on Economics 105095, London School of Economics and Political Science, LSE Library.
    85. Leslie G. Godrey, 2010. "Robust Nonnested Testing for Ordinary Least Squares Regression When Some of the Regressors are Lagged Dependent Variables," Discussion Papers 10/22, Department of Economics, University of York.
    86. Demetrescu, Matei & Salish, Nazarii, 2024. "(Structural) VAR models with ignored changes in mean and volatility," International Journal of Forecasting, Elsevier, vol. 40(2), pages 840-854.
    87. Enders, Almira & Enders, Zeno, 2017. "Second-round effects after oil-price shocks: Evidence for the euro area and Germany," Economics Letters, Elsevier, vol. 159(C), pages 208-213.
    88. Kang, Wensheng & Perez de Gracia, Fernando & Ratti, Ronald A., 2021. "Economic uncertainty, oil prices, hedging and U.S. stock returns of the airline industry," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    89. Ron Alquist & Lutz Kilian & Robert Vigfusson, 2011. "Forecasting the Price of Oil," Staff Working Papers 11-15, Bank of Canada.
    90. Òscar Jordà & Alan M. Taylor, 2024. "Local Projections," Working Paper Series 2024-24, Federal Reserve Bank of San Francisco.
    91. Helmut Lütkepohl & Aleksei Netsunajev, 2014. "Structural Vector Autoregressions with Smooth Transition in Variances: The Interaction between U.S. Monetary Policy and the Stock Market," Discussion Papers of DIW Berlin 1388, DIW Berlin, German Institute for Economic Research.
    92. International Monetary Fund, 2007. "A Simple DGE Model for Inflation Targeting," IMF Working Papers 2007/197, International Monetary Fund.
    93. Michele Piffer & Maximilian Podstawski, 2016. "Identifying Uncertainty Shocks Using the Price of Gold," Discussion Papers of DIW Berlin 1549, DIW Berlin, German Institute for Economic Research.
    94. Kerssenfischer, Mark, 2019. "Information effects of euro area monetary policy: New evidence from high-frequency futures data," Discussion Papers 07/2019, Deutsche Bundesbank.
    95. Anna Creti & Marc Joëts, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Post-Print hal-01549809, HAL.
    96. Su, Jen-Je & Cheung, Adrian (Wai-Kong) & Roca, Eduardo, 2012. "Are securitised real estate markets efficient?," Economic Modelling, Elsevier, vol. 29(3), pages 684-690.
    97. Di Francesco, Tommaso & Hommes, Cars, 2025. "Sentiment-driven speculation in financial markets with heterogeneous beliefs: A machine learning approach," Journal of Economic Dynamics and Control, Elsevier, vol. 175(C).
    98. Marco Lorusso & Luca Pieroni, 2015. "Causes and Consequences of Oil Price Shocks on the UK Economy," CEERP Working Paper Series 002, Centre for Energy Economics Research and Policy, Heriot-Watt University, revised Nov 2015.
    99. Ralf Brüggemann & Markus Glaser & Stefan Schaarschmidt & Sandra Stankiewicz, 2014. "The Stock Return - Trading Volume Relationship in European Countries: Evidence from Asymmetric Impulse Responses," Working Paper Series of the Department of Economics, University of Konstanz 2014-24, Department of Economics, University of Konstanz.
    100. Eric Beutner & Julia Schaumburg & Barend Spanjers, 2024. "Bootstrapping GARCH Models Under Dependent Innovations," Tinbergen Institute Discussion Papers 24-008/III, Tinbergen Institute.
    101. Andrzej Cieślik & Mehmet Burak Turgut, 2024. "Uncertainty and long-run economy: the role of R &D and business dynamism," Empirical Economics, Springer, vol. 66(4), pages 1403-1441, April.
    102. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    103. Erdenebat Bataa & Denise R.Osborn & Marianne Sensier, 2016. "China's Increasing Global Influence: Changes in International Growth Spillovers," Centre for Growth and Business Cycle Research Discussion Paper Series 221, Economics, The University of Manchester.
    104. Benjamin Wong, 2015. "Do inflation expectations propagate the inflationary impact of real oil price shocks?: Evidence from the Michigan survey," Reserve Bank of New Zealand Discussion Paper Series DP2015/01, Reserve Bank of New Zealand.
    105. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    106. Rüdiger Bachmann & Sebastian K. Rüth, 2020. "Systematic Monetary Policy And The Macroeconomic Effects Of Shifts In Residential Loan‐To‐Value Ratios," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 61(2), pages 503-530, May.
    107. Dominik Bertsche & Robin Braun, 2018. "Identification of Structural Vector Autoregressions by Stochastic Volatility," Working Paper Series of the Department of Economics, University of Konstanz 2018-03, Department of Economics, University of Konstanz.
    108. Carter, Colin A & Rausser, Gordon C & Smith, Aaron, 2017. "Commodity Storage and the Market Effects of Biofuel Policies," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt61t114zb, Department of Agricultural & Resource Economics, UC Berkeley.
    109. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    110. Todd E. Clark & Michael W. McCracken, 2001. "Evaluating long-horizon forecasts," Research Working Paper RWP 01-14, Federal Reserve Bank of Kansas City.
    111. Nedeljkovic, Milan, 2008. "Testing for Smooth Transition Nonlinearity in Adjustments of Cointegrating Systems," Economic Research Papers 269887, University of Warwick - Department of Economics.
    112. Miles Parker & Benjamin Wong, 2014. "Exchange rate and commodity price pass‐through in New Zealand," Reserve Bank of New Zealand Analytical Notes series AN2014/01, Reserve Bank of New Zealand.
    113. James D. Hamilton, 2008. "Macroeconomics and ARCH," NBER Working Papers 14151, National Bureau of Economic Research, Inc.
    114. Paulo M.M. Rodrigues & Gabriel Zsurkis, 2019. "A reexamination of inflation persistence dynamics in OECD countries: A new approach," Working Papers w201909, Banco de Portugal, Economics and Research Department.
    115. Ma, Chaoqun & Tian, Yonggang & Hsiao, Shisong & Deng, Liurui, 2022. "Monetary policy shocks and Bitcoin prices," Research in International Business and Finance, Elsevier, vol. 62(C).
    116. Jadidzadeh, Ali & Serletis, Apostolos, 2017. "How does the U.S. natural gas market react to demand and supply shocks in the crude oil market?," Energy Economics, Elsevier, vol. 63(C), pages 66-74.
    117. Elstner, Steffen & Rujin, Svetlana, 2019. "The consequences of U.S. technology changes for productivity in advanced economies," Ruhr Economic Papers 796, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    118. Chavleishvili, Sulkhan & Moench, Emanuel, 2025. "Natural disasters as macroeconomic tail risks," Journal of Econometrics, Elsevier, vol. 247(C).
    119. Guiseppe Cavaliere & Anders Rahbek & A.M.Robert Taylor, 2010. "Bootstrap Sequential Determination of the Co-integration Rank in VAR Models," CREATES Research Papers 2010-07, Department of Economics and Business Economics, Aarhus University.
    120. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    121. Herrera, Ana María & Rangaraju, Sandeep Kumar, 2019. "The quantitative effects of tax foresight: Not all states are equal," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    122. Smeekes, S. & Urbain, J.R.Y.J., 2014. "A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing," Research Memorandum 008, Maastricht University, Graduate School of Business and Economics (GSBE).
    123. Indupurnahayu & Edhie Budi Setiawan & Lira Agusinta & Ryan Firdiansyah Suryawan & Prasadja Ricardianto & Mustika Sari & Sri Mulyono & Reza Fauzi Jaya Sakti, 2021. "Changes in Demand and Supply of the Crude Oil Market During the COVID-19 Pandemic and its Effects on the Natural Gas Market," International Journal of Energy Economics and Policy, Econjournals, vol. 11(3), pages 1-6.
    124. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    125. Pozo, Veronica F. & Bejan, Vladimir, 2016. "Identification in Structural Models Linking Energy and Corn Commodity Markets," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236055, Agricultural and Applied Economics Association.
    126. Andreea Halunga & Chris D. Orme & Takashi Yamagata, 2011. "A Heteroskedasticity Robust Breusch-Pagan Test for Contemporaneous Correlation in Dynamic Panel Data Models," Economics Discussion Paper Series 1118, Economics, The University of Manchester.
    127. Quentin Giai Gianetto & Hamdi Raïssi, 2015. "Testing Instantaneous Causality in Presence of Nonconstant Unconditional Covariance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 46-53, January.
    128. Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2023. "Inference for Local Projections," Papers 2306.03073, arXiv.org, revised Aug 2024.
    129. H. Peter Boswijk & Giuseppe Cavaliere & Luca De Angelis & A. M. Robert Taylor, 2023. "Adaptive information-based methods for determining the co-integration rank in heteroskedastic VAR models," Econometric Reviews, Taylor & Francis Journals, vol. 42(9-10), pages 725-757, November.
    130. Helmut Luetkepohl, 2011. "Vector Autoregressive Models," Economics Working Papers ECO2011/30, European University Institute.
    131. Ajmi, Ahdi Noomen & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sarafrazi, Soodabeh, 2014. "How strong are the causal relationships between Islamic stock markets and conventional financial systems? Evidence from linear and nonlinear tests," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 213-227.
    132. Bachmeier, Lance, 2013. "Identification in models of gasoline pricing," Economics Letters, Elsevier, vol. 120(1), pages 71-73.
    133. Sofronis Clerides & Styliani-Iris Krokida & Neophytos Lambertides & Dimitris Tsouknidis, 2020. "What matters for consumer sentiment? World oil price or retail gasoline price?," Working Paper series 20-22, Rimini Centre for Economic Analysis.
    134. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    135. Hubrich, Kirstin & Granziera, Eleonora & Moon, Hyungsik Roger, 2013. "A predictability test for a small number of nested models," Working Paper Series 1580, European Central Bank.
    136. Wai Choi & Anindya Sen & Adam White, 2011. "Response of industrial customers to hourly pricing in Ontario’s deregulated electricity market," Journal of Regulatory Economics, Springer, vol. 40(3), pages 303-323, December.
    137. James G. MacKinnon, 2006. "Bootstrap Methods In Econometrics," Working Paper 1028, Economics Department, Queen's University.
    138. Kilian, Lutz & Park, Cheolbeom, 2007. "The Impact of Oil Price Shocks on the U.S. Stock Market," CEPR Discussion Papers 6166, C.E.P.R. Discussion Papers.
    139. Karel Mertens & Morten O. Ravn, 2013. "The Dynamic Effects of Personal and Corporate Income Tax Changes in the United States," American Economic Review, American Economic Association, vol. 103(4), pages 1212-1247, June.
    140. Kang, Wensheng & Ratti, Ronald A., 2013. "Oil shocks, policy uncertainty and stock market return," MPRA Paper 49008, University Library of Munich, Germany.
    141. Ioannidis, C. & Peel, D.A., 2005. "Testing for market efficiency in gambling markets when the errors are non-normal and heteroskedastic an application of the wild bootstrap," Economics Letters, Elsevier, vol. 87(2), pages 221-226, May.
    142. Kilian, Lutz, 2008. "Why Does Gasoline Cost so Much? A Joint Model of the Global Crude Oil Market and the U.S. Retail Gasoline Market," CEPR Discussion Papers 6919, C.E.P.R. Discussion Papers.
    143. Giray Gozgor & Ender Demir, 2017. "Excess stock returns, oil shocks, and policy uncertainty in the U.S," Economics Bulletin, AccessEcon, vol. 37(2), pages 741-755.
    144. Martins, Luis F. & Rodrigues, Paulo M.M., 2014. "Testing for persistence change in fractionally integrated models: An application to world inflation rates," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 502-522.
    145. Born, Benjamin & Breuer, Sebastian & Elstner, Steffen, 2017. "Uncertainty and the Great Recession," CEPR Discussion Papers 12083, C.E.P.R. Discussion Papers.
    146. Atems, Bebonchu & Kapper, Devin & Lam, Eddery, 2015. "Do exchange rates respond asymmetrically to shocks in the crude oil market?," Energy Economics, Elsevier, vol. 49(C), pages 227-238.
    147. Lütkepohl, Helmut & Velinov, Anton, 2014. "Structural vector autoregressions: Checking identifying long-run restrictions via heteroskedasticity," SFB 649 Discussion Papers 2014-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    148. Mandler, Martin & Scharnagl, Michael, 2022. "Financial cycles across G7 economies: A view from wavelet analysis," The Journal of Economic Asymmetries, Elsevier, vol. 26(C).
    149. Herwartz, Helmut & Lütkepohl, Helmut, 2014. "Structural vector autoregressions with Markov switching: Combining conventional with statistical identification of shocks," Journal of Econometrics, Elsevier, vol. 183(1), pages 104-116.
    150. Lutz Kilian & Atsushi Inoue, 2004. "Bagging Time Series Models," Econometric Society 2004 North American Summer Meetings 110, Econometric Society.
    151. Nikolay Gospodinov & Ye Tao, 2011. "Bootstrap Unit Root Tests in Models with GARCH(1,1) Errors," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 379-405, August.
    152. Emi Nakamura & Jón Steinsson, 2018. "Identification in Macroeconomics," Journal of Economic Perspectives, American Economic Association, vol. 32(3), pages 59-86, Summer.
    153. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    154. Ye, Haichun & Ashley, Richard & Guerard, John, 2015. "Comparing the effectiveness of traditional vs. mechanized identification methods in post-sample forecasting for a macroeconomic Granger causality analysis," International Journal of Forecasting, Elsevier, vol. 31(2), pages 488-500.
    155. Hamidi Sahneh, Mehdi, 2013. "Testing for Noncausal Vector Autoregressive Representation," MPRA Paper 68867, University Library of Munich, Germany, revised 16 Aug 2014.
    156. Chris D. Orme & Takashi Yamagata, 2011. "A Heteroskedasticity-Robust F-Test Statistic for Individual Effects," Economics Discussion Paper Series 1124, Economics, The University of Manchester.
    157. Ouyang, Ruolan & Chen, Xiang & Fang, Yi & Zhao, Yang, 2022. "Systemic risk of commodity markets: A dynamic factor copula approach," International Review of Financial Analysis, Elsevier, vol. 82(C).
    158. Bataa, Erdenebat & Osborn, Denise R. & Sensier, Marianne, 2018. "China's increasing global influence: Changes in international growth linkages," Economic Modelling, Elsevier, vol. 74(C), pages 194-206.
    159. Hamidi Sahneh, Mehdi, 2015. "Are the shocks obtained from SVAR fundamental?," MPRA Paper 65126, University Library of Munich, Germany.
    160. Boldea, Otilia & Cornea-Madeira, Adriana & Hall, Alastair R., 2019. "Bootstrapping structural change tests," Journal of Econometrics, Elsevier, vol. 213(2), pages 359-397.
    161. Dohyoung Kwon, 2022. "The impacts of oil price shocks and United States economic uncertainty on global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1595-1607, April.
    162. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2014. "The impact of oil price shocks on U.S. bond market returns," Energy Economics, Elsevier, vol. 44(C), pages 248-258.
    163. Alter, Adrian & Schüler, Yves S., 2012. "Credit spread interdependencies of European states and banks during the financial crisis," Journal of Banking & Finance, Elsevier, vol. 36(12), pages 3444-3468.
    164. Nuno Silva, 2013. "Equity Premia Predictability in the EuroZone," GEMF Working Papers 2013-22, GEMF, Faculty of Economics, University of Coimbra.
    165. Narjes Zamani, 2016. "The Relationship between Crude Oil and Coal Markets: A New Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 6(4), pages 801-805.
    166. Wei, Yigang & Li, Yan & Wang, Zhicheng, 2022. "Multiple price bubbles in global major emission trading schemes: Evidence from European Union, New Zealand, South Korea and China," Energy Economics, Elsevier, vol. 113(C).
    167. Narjes Zamani, 2016. "How the Crude Oil Market Affects the Natural Gas Market? Demand and Supply Shocks," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 217-221.
    168. Gechert, Sebastian & Paetz, Christoph & Villanueva, Paloma, 2021. "The macroeconomic effects of social security contributions and benefits," Journal of Monetary Economics, Elsevier, vol. 117(C), pages 571-584.
    169. Anton Velinov & Wenjuan Chen, 2014. "Are There Bubbles in Stock Prices?: Testing for Fundamental Shocks," Discussion Papers of DIW Berlin 1375, DIW Berlin, German Institute for Economic Research.
    170. Atsushi Inoue & Lutz Kilian, 2019. "The Uniform Validity of Impulse Response Inference in Autoregressions," Working Papers 1908, Federal Reserve Bank of Dallas.
    171. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2015. "Testing for Granger causality in large mixed-frequency VARs," Discussion Papers 45/2015, Deutsche Bundesbank.
    172. Xiaohui Zhao, 2020. "Do the stock returns of clean energy corporations respond to oil price shocks and policy uncertainty?," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-16, December.
    173. Bob Nobay & Ivan Paya & David A. Peel, 2010. "Inflation Dynamics in the U.S.: Global but Not Local Mean Reversion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 135-150, February.
    174. Erdenebat Bataa & Dong H. Kim & Denise R. Osborn, 2006. "A Further Examination of the Expectations Hypothesis for the Term Structure," Economics Discussion Paper Series 0611, Economics, The University of Manchester.
    175. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2014. "Density forecasts with MIDAS models," Working Paper 2014/10, Norges Bank.
    176. Bachmann, Rüdiger & Rueth, Sebastian, 2017. "Systematic Monetary Policy and the Macroeconomic Effects of Shifts in Loan-to-Value Ratios," CEPR Discussion Papers 12024, C.E.P.R. Discussion Papers.
    177. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Paper 1127, Economics Department, Queen's University.
    178. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.
    179. Canepa, Alessandra, 2020. "Bootstrap Bartlett Adjustment for Hypotheses Testing on Cointegrating Vectors," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202006, University of Turin.
    180. Philip Inyeob Ji & Sangbae Kim, 2013. "Mean-reversion in closed-end fund discount: evidence from half-life," Applied Economics, Taylor & Francis Journals, vol. 45(32), pages 4503-4515, November.
    181. Cepni, Oguzhan & Dul, Wiehan & Gupta, Rangan & Wohar, Mark E., 2021. "The dynamics of U.S. REITs returns to uncertainty shocks: A proxy SVAR approach," Research in International Business and Finance, Elsevier, vol. 58(C).
    182. Uliha, Gábor, 2016. "Az olajár gyengülő makrogazdasági hatásai. Két versengő elmélet szintézise [Weakening macroeconomic effects of the oil price. A synthesis of two competing theories]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(7), pages 787-818.
    183. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    184. Dudda, Tom L. & Klein, Tony & Nguyen, Duc Khuong & Walther, Thomas, 2022. "Common Drivers of Commodity Futures?," QBS Working Paper Series 2022/05, Queen's University Belfast, Queen's Business School.
    185. Sebastian Gechert & Christoph Paetz & Paloma Villanueva, 2016. "Top-Down vs. Bottom-Up? Reconcilling the Effects of Tax and Transfer Shocks on Output," IMK Working Paper 169-2016, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    186. Yi-Hui Liu & Wei-Shiun Chang & Wen-Yi Chen, 2019. "Health progress and economic growth in the United States: the mixed frequency VAR analyses," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1895-1911, July.
    187. Giulio Cainelli & Andrea Fracasso & Giuseppe Vittucci Marzetti, 2012. "Spatial agglomeration and productivity in Italy: a panel smooth transition regression approach," Openloc Working Papers 1204, Public policies and local development.
    188. Ralf Becker & Denise R. Osborn, 2012. "Weighted Smooth Transition Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(5), pages 795-811, August.
    189. Bob Nobay & Ivan Paya & David A. Peel, 2007. "Inflation Dynamics in the US -A Nonlinear Perspective," FMG Discussion Papers dp601, Financial Markets Group.
    190. Anh D.M.Nguyen & Luisanna Onnis & Raffaele Rossi, 2016. "The Macroeconomic Effects of Income and Consumption Tax Changes," Centre for Growth and Business Cycle Research Discussion Paper Series 227, Economics, The University of Manchester.
    191. Ajay Shah & Ila Patnaik & Matthieu Stigler, 2010. "Understanding the ADR premium under market segmentation," Working Papers id:2826, eSocialSciences.
    192. Russell Davidson & Victoria Zinde-Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1595-1631, December.
    193. Jochen H. F. Güntner, 2011. "How do international stock markets respond to oil demand and supply shocks?," FEMM Working Papers 110028, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    194. Niklas Ahlgren & Paul Catani, 2017. "Wild bootstrap tests for autocorrelation in vector autoregressive models," Statistical Papers, Springer, vol. 58(4), pages 1189-1216, December.
    195. Ederington, Louis H. & Fernando, Chitru S. & Lee, Thomas K. & Linn, Scott C. & Zhang, Huiming, 2021. "The relation between petroleum product prices and crude oil prices," Energy Economics, Elsevier, vol. 94(C).
    196. Pascal Paul, 2020. "The Time-Varying Effect of Monetary Policy on Asset Prices," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 690-704, October.
    197. Farka, Mira & DaSilva, Amadeu, 2011. "The fed and the term structure: Addressing simultaneity within a structural VAR model," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 935-952.
    198. Maghyereh, Aktham & Abdoh, Hussein, 2021. "The effect of structural oil shocks on bank systemic risk in the GCC countries," Energy Economics, Elsevier, vol. 103(C).
    199. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    200. Brendan Berthold, 2024. "The macro-financial effects of Climate Policy Risk: evidence from Switzerland," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 160(1), pages 1-13, December.
    201. Berthold, Brendan, 2023. "The macroeconomic effects of uncertainty and risk aversion shocks," European Economic Review, Elsevier, vol. 154(C).
    202. Stan Hurn & Peter C. B. Phillips & Shu-Ping Shi, 2016. ""Change Detection and the Causal Impact of the Yield Curve," Cowles Foundation Discussion Papers 2058, Cowles Foundation for Research in Economics, Yale University.
    203. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2017. "Where do jobs go when oil prices drop?," Energy Economics, Elsevier, vol. 64(C), pages 469-482.
    204. Lambertides, Neophytos & Savva, Christos S. & Tsouknidis, Dimitris A., 2017. "The effects of oil price shocks on U.S. stock order flow imbalances and stock returns," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 137-146.
    205. Filippo Lechthaler & Lisa Leinert, 2019. "Moody oil: What is driving the crude oil price?," Empirical Economics, Springer, vol. 57(5), pages 1547-1578, November.
    206. Lutz Kilian, 2008. "The Economic Effects of Energy Price Shocks," Journal of Economic Literature, American Economic Association, vol. 46(4), pages 871-909, December.
    207. Kim, Jae H. & Silvapulle, Param & Hyndman, Rob J., 2007. "Half-life estimation based on the bias-corrected bootstrap: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3418-3432, April.
    208. Kerssenfischer, Mark, 2022. "Information effects of euro area monetary policy," Economics Letters, Elsevier, vol. 216(C).
    209. Etienne, Xiaoli L. & Irwin, Scott H. & Garcia, Philip, 2014. "Bubbles in food commodity markets: Four decades of evidence," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 129-155.
    210. Herwartz, Helmut & Maxand, Simone & Rohloff, Hannes, 2018. "Lean against the wind or float with the storm? Revisiting the monetary policy asset price nexus by means of a novel statistical identification approach," University of Göttingen Working Papers in Economics 354, University of Goettingen, Department of Economics.
    211. Lin, Jilei & Eck, Daniel J., 2021. "Minimizing post-shock forecasting error through aggregation of outside information," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1710-1727.
    212. Federico Bassetti & Roberto Casarin & Francesco Ravazzolo, 2019. "Density Forecasting," BEMPS - Bozen Economics & Management Paper Series BEMPS59, Faculty of Economics and Management at the Free University of Bozen.
    213. Todd E. Clark & Michael W. McCracken, 2013. "Evaluating the accuracy of forecasts from vector autoregressions," Working Papers 2013-010, Federal Reserve Bank of St. Louis.
    214. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    215. Richard A. Ashley & Faezeh Najafi, 2025. "The Ashley and Patterson (1986) test for serial independence in daily stock returns, revisited," Annals of Operations Research, Springer, vol. 346(1), pages 567-584, March.
    216. Gao, Liping & Kim, Hyeongwoo & Saba, Richard, 2014. "How Do Oil Price Shocks Affect Consumer Prices?," MPRA Paper 57259, University Library of Munich, Germany.
    217. Kang, Wensheng & Ratti, Ronald A. & Vespignani, Joaquin, 2016. "The impact of oil price shocks on the U.S. stock market: A note on the roles of U.S. and non-U.S. oil production," Economics Letters, Elsevier, vol. 145(C), pages 176-181.
    218. Ruiqi Tan & Wei Dai, 2024. "Oil Price Shocks and the Canadian Stock Market," JRFM, MDPI, vol. 17(11), pages 1-14, November.
    219. Kilian, Lutz & Inoue, Atsushi, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
    220. Erdenebat Bataa & Dong H. Kim & Denise R. Osborn, 2007. "Expectations Hypothesis Tests in the Presence of Model Uncertainty," Discussion Paper Series 0703, Institute of Economic Research, Korea University.
    221. Klaus Grobys, 2015. "Size distortions of the wild bootstrapped HCCME-based LM test for serial correlation in the presence of asymmetric conditional heteroskedasticity," Empirical Economics, Springer, vol. 48(3), pages 1189-1202, May.
    222. Giuseppe Cavaliere & Morten Ørregaard Nielsen & A.M. Robert Taylor, 2014. "Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets," CREATES Research Papers 2014-22, Department of Economics and Business Economics, Aarhus University.
    223. Dunbar, Kwamie, 2022. "Impact of the COVID-19 event on U.S. banks’ financial soundness," Research in International Business and Finance, Elsevier, vol. 59(C).
    224. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    225. Fracasso, Andrea & Vittucci Marzetti, Giuseppe, 2015. "International trade and R&D spillovers," Journal of International Economics, Elsevier, vol. 96(1), pages 138-149.
    226. Filippo Brutti & Philip Sauré, 2012. "Transmission of Sovereign Risk in the Euro Crisis," Working Papers 12.01, Swiss National Bank, Study Center Gerzensee.
    227. Dées, Stéphane & Güntner, Jochen, 2014. "Analysing and forecasting price dynamics across euro area countries and sectors: a panel VAR approach," Working Paper Series 1724, European Central Bank.
    228. Andrey Rafalson, 2012. "Bootstrap inference about integrated volatility (in Russian)," Quantile, Quantile, issue 10, pages 91-108, December.
    229. Kilian, Lutz & Rebucci, Alessandro & Spatafora, Nikola, 2007. "Oil Shocks and External Balances," CEPR Discussion Papers 6303, C.E.P.R. Discussion Papers.
    230. David O. Cushman & Glauco De Vita & Emmanouil Trachanas, 2023. "Is the Fisher effect asymmetric? Cointegration analysis and expectations measurement," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(4), pages 3727-3748, October.
    231. Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
    232. Moayad H. Al Rasasi, 2018. "The Response of G7 Real Exchange Rates to Oil Price Shocks," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(4), pages 191-205, April.
    233. Guglielmo Maria Caporale & Andros Gregoriou, 2009. "Non-normality, heteroscedasticity and recursive unit root tests of PPP: solving the PPP puzzle?," Applied Economics Letters, Taylor & Francis Journals, vol. 16(3), pages 223-226.
    234. Aktham I. Maghyereh & Osama D. Sweidan, 2020. "Do structural shocks in the crude oil market affect biofuel prices?," International Economics, CEPII research center, issue 164, pages 183-193.
    235. Liudas Giraitis & Yufei Li & Peter C.B. Phillips, 2023. "Robust Inference on Correlation under General Heterogeneity," Cowles Foundation Discussion Papers 2354, Cowles Foundation for Research in Economics, Yale University.
    236. Todd E. Clark & Kenneth D. West, 2005. "Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference," NBER Technical Working Papers 0305, National Bureau of Economic Research, Inc.
    237. Arghyrou, Michael G. & Gregoriou, Andros, 2007. "Testing for Purchasing Power Parity correcting for non-normality using the wild bootstrap," Economics Letters, Elsevier, vol. 95(2), pages 285-290, May.
    238. Cavaliere, Giuseppe & Lu, Ye & Rahbek, Anders & Stærk-Østergaard, Jacob, 2023. "Bootstrap inference for Hawkes and general point processes," Journal of Econometrics, Elsevier, vol. 235(1), pages 133-165.
    239. Feng-Li Lin & Mei-Chih Wang, 2019. "Does economic growth cause military expenditure to go up? Using MF-VAR model," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(6), pages 3097-3117, November.
    240. Zeina Alsalman, 2023. "Oil price shocks and US unemployment: evidence from disentangling the duration of unemployment spells in the labor market," Empirical Economics, Springer, vol. 65(1), pages 479-511, July.
    241. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    242. Shi, Xunpeng & Shen, Yifan, 2021. "Macroeconomic uncertainty and natural gas prices: Revisiting the Asian Premium," Energy Economics, Elsevier, vol. 94(C).
    243. Wei Dai & Apostolos Serletis, 2018. "Oil Price Shocks and the Credit Default Swap Market," Open Economies Review, Springer, vol. 29(2), pages 283-293, April.
    244. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2013. "Testing for Granger Causality with Mixed Frequency Data," CEPR Discussion Papers 9655, C.E.P.R. Discussion Papers.
    245. Samaresh Bardhan & Rajesh Sharma & Vivekananda Mukherjee, 2019. "Threshold Effect of Bank-specific Determinants of Non-performing Assets: An Application in Indian Banking," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 18(1_suppl), pages 1-34, April.
    246. Giuseppe Cavaliere & Anders Rahbek, 2019. "A Primer On Bootstrap Testing Of Hypotheses In Time Series Models: With An Application To Double Autoregressive Models," Discussion Papers 19-03, University of Copenhagen. Department of Economics.
    247. Steffen Henzel & Malte Rengel, 2013. "Dimensions of macroeconomic uncertainty: A common factor analysis," ifo Working Paper Series 167, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    248. Daniel P. Murphy, 2013. "How does government spending stimulate consumption?," Globalization Institute Working Papers 157, Federal Reserve Bank of Dallas.
    249. Steenkamp, Daan, 2018. "Explosiveness in G11 currencies," Economic Modelling, Elsevier, vol. 68(C), pages 388-408.
    250. Marshall, Andrew & Tang, Leilei, 2011. "Assessing the impact of heteroskedasticity for evaluating hedge fund performance," International Review of Financial Analysis, Elsevier, vol. 20(1), pages 12-19, January.
    251. Elstner, Steffen, 2012. "Uncertainty, heterogeneous expectation errors and economic activity: evidence from business survey data," Munich Dissertations in Economics 14037, University of Munich, Department of Economics.
    252. Li, Gaorong & Peng, Heng & Tong, Tiejun, 2013. "Simultaneous confidence band for nonparametric fixed effects panel data models," Economics Letters, Elsevier, vol. 119(3), pages 229-232.
    253. Capucine Nobletz, 2021. "Return spillovers between green energy indexes and financial markets: a first sectoral approach," EconomiX Working Papers 2021-24, University of Paris Nanterre, EconomiX.
    254. Bejan, Vladimir & Parkin, William S., 2015. "Examining the effect of repressive and conciliatory government actions on terrorism activity in Israel," Economics Letters, Elsevier, vol. 133(C), pages 55-58.
    255. Chambers, Marcus J., 2013. "Jackknife estimation of stationary autoregressive models," Journal of Econometrics, Elsevier, vol. 172(1), pages 142-157.
    256. Kilian, Lutz, 2006. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," CEPR Discussion Papers 5994, C.E.P.R. Discussion Papers.
    257. Bryan D. MacGregor & Rainer Schulz & Yuan Zhao, 2021. "Performance and Market Maturity in Mutual Funds: Is Real Estate Different?," The Journal of Real Estate Finance and Economics, Springer, vol. 63(3), pages 437-492, October.
    258. Godfrey, L.G. & Tremayne, A.R., 2005. "The wild bootstrap and heteroskedasticity-robust tests for serial correlation in dynamic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 49(2), pages 377-395, April.
    259. Canepa Alessandra, 2022. "Small Sample Adjustment for Hypotheses Testing on Cointegrating Vectors," Journal of Time Series Econometrics, De Gruyter, vol. 14(1), pages 51-85, January.
    260. Hammoudeh, Shawkat & Uddin, Gazi Salah & Sousa, Ricardo M. & Wadström, Christoffer & Sharmi, Rubaiya Zaman, 2022. "Do pandemic, trade policy and world uncertainties affect oil price returns?," Resources Policy, Elsevier, vol. 77(C).
    261. Werner, Thomas & Stapf, Jelena, 2003. "How wacky is the DAX? The changing structure of German stock market volatility," Discussion Paper Series 1: Economic Studies 2003,18, Deutsche Bundesbank.
    262. Qiang Ji & Syed Jawad Hussain Shahzad & Elie Bouri & Muhammad Tahir Suleman, 2020. "Dynamic structural impacts of oil shocks on exchange rates: lessons to learn," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 9(1), pages 1-19, December.
    263. Mauricio Stern, 2025. "Windfalls for All? International Elasticities and Dutch Disease in a Commodity Exporting Economy," Working Papers 2025-06, Banco de México.
    264. Carsen Jentsch & Kurt Graden Lunsford, 2016. "Proxy SVARs: Asymptotic Theory, Bootstrap Inference, and the Effects of Income Tax Changes in the United States," Working Papers (Old Series) 1619, Federal Reserve Bank of Cleveland.
    265. Surach Tanboon, 2008. "The Bank of Thailand Structural Model for Policy Analysis," Working Papers 2008-06, Monetary Policy Group, Bank of Thailand.
    266. Atems, Bebonchu & Mette, Jehu & Lin, Guoyu & Madraki, Golshan, 2023. "Estimating and forecasting the impact of nonrenewable energy prices on US renewable energy consumption," Energy Policy, Elsevier, vol. 173(C).
    267. Kim, Jae H., 2006. "Wild bootstrapping variance ratio tests," Economics Letters, Elsevier, vol. 92(1), pages 38-43, July.
    268. Nguyen, Bao H. & Okimoto, Tatsuyoshi, 2019. "Asymmetric reactions of the US natural gas market and economic activity," Energy Economics, Elsevier, vol. 80(C), pages 86-99.
    269. Jochen Mankart & Romanos Priftis & Rigas Oikonomou, 2022. "The long and short of financing government spending," Working Paper Research 418, National Bank of Belgium.
    270. Bibi Cai & Enwen Zhu & Shiqing Ling, 2024. "Asymptotic inference of the ARMA model with time‐functional variance noises," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1230-1258, September.
    271. Giovanni Angelini & Giuseppe Cavaliere & Luca Fanelli, 2022. "Bootstrap inference and diagnostics in state space models: With applications to dynamic macro models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 3-22, January.
    272. Michele La Rocca & Cira Perna, 2022. "Opening the Black Box: Bootstrapping Sensitivity Measures in Neural Networks for Interpretable Machine Learning," Stats, MDPI, vol. 5(2), pages 1-18, April.
    273. Ben Ammar, Imen & Hellara, Slaheddine, 2021. "Intraday interactions between high-frequency trading and price efficiency," Finance Research Letters, Elsevier, vol. 41(C).
    274. A. Melander & G. Sismanidis & D. Grenouilleau, 2007. "The track record of the Commission's forecasts - an update," European Economy - Economic Papers 2008 - 2015 291, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    275. Zeina Alsalman, 2021. "Does the source of oil supply shock matter in explaining the behavior of U.S. consumer spending and sentiment?," Empirical Economics, Springer, vol. 61(3), pages 1491-1518, September.
    276. Helmut Lütkepohl, 2012. "Identifying Structural Vector Autoregressions via Changes in Volatility," Discussion Papers of DIW Berlin 1259, DIW Berlin, German Institute for Economic Research.
    277. Adjemian, Michael K. & Janzen, Joseph & Carter, Colin A. & Smith, Aaron, 2014. "Deconstructing Wheat Price Spikes: A Model of Supply and Demand, Financial Speculation, and Commodity Price Comovement," Economic Research Report 167369, United States Department of Agriculture, Economic Research Service.
    278. Huang, Wenyang & Wang, Yizhi, 2024. "Identifying price bubbles in global carbon markets: Evidence from the SADF test, GSADF test and LPPLS method," Energy Economics, Elsevier, vol. 134(C).
    279. Giuseppe Cavaliere & A. M. Robert Taylor, 2009. "Bootstrap M Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 393-421.
    280. Jae H. Kim & Philip I. Ji, 2004. "International linkage of real interest rates: the case of East Asian countries," Econometric Society 2004 Australasian Meetings 124, Econometric Society.
    281. Rüth, Sebastian K. & Simon, Camilla, 2022. "How do income and the debt position of households propagate fiscal stimulus into consumption?," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    282. Soo-Bin Jeong & Bong-Hwan Kim & Tae-Hwan Kim & Hyung-Ho Moon, 2017. "Unit Root Tests In The Presence Of Multiple Breaks In Variance," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 62(02), pages 345-361, June.
    283. Hussain, Syed M. & Malik, Samreen, 2016. "Asymmetric Effects of Exogenous Tax Changes," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 268-300.
    284. Lee, Taewook, 2016. "Wild bootstrap Ljung–Box test for cross correlations of multivariate time series," Economics Letters, Elsevier, vol. 147(C), pages 59-62.
    285. Catani, P.S. & Ahlgren, N.J.C., 2017. "Combined Lagrange multiplier test for ARCH in vector autoregressive models," Econometrics and Statistics, Elsevier, vol. 1(C), pages 62-84.
    286. Kelly, Bryan T. & Pruitt, Seth & Su, Yinan, 2019. "Characteristics are covariances: A unified model of risk and return," Journal of Financial Economics, Elsevier, vol. 134(3), pages 501-524.
    287. Qin, Xiao, 2020. "Oil shocks and financial systemic stress: International evidence," Energy Economics, Elsevier, vol. 92(C).
    288. Chang, Sanders S., 2013. "Can cross-country portfolio rebalancing give rise to forward bias in FX markets?," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 1079-1096.
    289. Han Liu & Ying Liu & Yonglian Wang, 2021. "Exploring the influence of economic policy uncertainty on the relationship between tourism and economic growth with an MF-VAR model," Tourism Economics, , vol. 27(5), pages 1081-1100, August.
    290. Martin Enilov & Giorgio Fazio & Atanu Ghoshray, 2023. "Global connectivity between commodity prices and national stock markets: A time‐varying MIDAS analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2607-2619, July.
    291. Ji, Philip Inyeob & In, Francis, 2010. "The impact of the global financial crisis on the cross-currency linkage of LIBOR-OIS spreads," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 575-589, December.
    292. Zhuo Chen & Bo Yan & Hanwen Kang, 2023. "Price bubbles of agricultural commodities: evidence from China’s futures market," Empirical Economics, Springer, vol. 64(1), pages 195-222, January.
    293. Matthias Gubler, 2014. "Carry Trade Activities: A Multivariate Threshold Model Analysis," Working Papers 2014-06, Swiss National Bank.
    294. Madeline Hanson & Daniela Hauser & Romanos Priftis, 2021. "Fiscal Spillovers: The Case of US Corporate and Personal Income Taxes," Staff Working Papers 21-41, Bank of Canada.
    295. Amilcar Velez, 2023. "The Local Projection Residual Bootstrap for AR(1) Models," Papers 2309.01889, arXiv.org, revised Mar 2025.
    296. Nedeljkovic, Milan, 2008. "Testing for Smooth Transition Nonlinearity in Adjustments of Cointegrating Systems," The Warwick Economics Research Paper Series (TWERPS) 876, University of Warwick, Department of Economics.
    297. Yao Axel Ehouman, 2020. "Do oil-market shocks drive global liquidity?," EconomiX Working Papers 2020-33, University of Paris Nanterre, EconomiX.
    298. Xiaojie Xu & Yun Zhang, 2022. "Contemporaneous causality among one hundred Chinese cities," Empirical Economics, Springer, vol. 63(4), pages 2315-2329, October.
    299. Shimizu Kenichi, 2013. "The bootstrap does not alwayswork for heteroscedasticmodels," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 189-204, August.
    300. Nguyen, Bao H. & Okimoto, Tatsuyoshi & Tran, Trung Duc, 2022. "Uncertainty-dependent and sign-dependent effects of oil market shocks," Journal of Commodity Markets, Elsevier, vol. 26(C).
    301. Rehman, Mobeen Ur & Shahzad, Syed Jawad Hussain & Uddin, Gazi Salah & Hedström, Axel, 2018. "Precious metal returns and oil shocks: A time varying connectedness approach," Resources Policy, Elsevier, vol. 58(C), pages 77-89.
    302. Kadir Özen & Dilem Yıldırım, 2021. "Application of Bagging in Day-Ahead Electricity Price Forecasting and Factor Augmentation," ERC Working Papers 2101, ERC - Economic Research Center, Middle East Technical University, revised Apr 2021.
    303. Bianco, Timothy & Herrera, Ana María, 2025. "Monetary policy and credit flows: A tale of two effective lower bounds," Journal of Economic Dynamics and Control, Elsevier, vol. 175(C).
    304. Jochen H. F. Güntner & Katharina Linsbauer, 2018. "The Effects of Oil Supply and Demand Shocks on U.S. Consumer Sentiment," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(7), pages 1617-1644, October.
    305. Dohyoung Kwon, 2024. "Changes in the effects of oil price shocks on US industrial production," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 2515-2526, April.
    306. Horowitz, Joel L. & Lobato, I.N. & Nankervis, John C. & Savin, N.E., 2006. "Bootstrapping the Box-Pierce Q test: A robust test of uncorrelatedness," Journal of Econometrics, Elsevier, vol. 133(2), pages 841-862, August.
    307. Kim, Jae H. & Ji, Philip Inyeob, 2011. "Mean-reversion in international real interest rates," Economic Modelling, Elsevier, vol. 28(4), pages 1959-1966, July.
    308. Endong Wang, 2024. "Structural counterfactual analysis in macroeconomics: theory and inference," Papers 2409.09577, arXiv.org.
    309. Velinov, Anton & Chen, Wenjuan, 2015. "Do stock prices reflect their fundamentals? New evidence in the aftermath of the financial crisis," Journal of Economics and Business, Elsevier, vol. 80(C), pages 1-20.
    310. Helmut Herwartz, 2022. "Modelling interaction patterns in a predator-prey system of two freshwater organisms in discrete time: an identified structural VAR approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 63-85, March.
    311. Richard A. Ashley & Kwok Ping Tsang, 2014. "Credible Granger-Causality Inference with Modest Sample Lengths: A Cross-Sample Validation Approach," Econometrics, MDPI, vol. 2(1), pages 1-20, March.
    312. Haroon Mumtaz & Gabor Pinter & Konstantinos Theodoridis, 2014. "What do VARs Tell Us about the Impact of a Credit Supply Shock? An Empirical Analysis," Working Papers 716, Queen Mary University of London, School of Economics and Finance.
    313. Erdenebat Bataa & Denise R. Osborn & Marianne Sensier & Dick van Dijk, 2009. "Structural Breaks in the International Transmission of Inflation," Centre for Growth and Business Cycle Research Discussion Paper Series 119, Economics, The University of Manchester.
    314. I Paya & D Peel, 2005. "A new analysis of the determinants of the real dollar-sterling exchange rate: 1871-1994," Working Papers 565953, Lancaster University Management School, Economics Department.
    315. Heaton, Chris, 2015. "Testing for multiple-period predictability between serially dependent time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 587-597.
    316. Ahn, Soojung & Steinbach, Sandro, 2021. "COVID-19 Trade Actions in the Agricultural and Food Sector," Journal of Food Distribution Research, Food Distribution Research Society, vol. 52(2), July.
    317. Wei, Yanfeng & Qiu, Feng & An, Henry & Zhang, Xindon & Li, Changhong & Guo, Xiaoying, 2024. "Exogenous oil supply shocks and global agricultural commodity prices: The role of biofuels," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 394-414.
    318. Hanno Lustig, 2005. "The Returns on Human Capital: Good News on Wall Street is Bad News on Main Street (joint with Stijn Van Nieuwerburgh)," UCLA Economics Online Papers 352, UCLA Department of Economics.
    319. Everaert, Gerdie & Pozzi, Lorenzo, 2007. "Bootstrap-based bias correction for dynamic panels," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1160-1184, April.
    320. Biao Gu & Liying Fu & Kehuan Yu, 2023. "On the dynamic effects of the cross‐section distribution of sectoral price changes in China," International Studies of Economics, John Wiley & Sons, vol. 18(4), pages 468-501, December.
    321. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2009. "Co-integration rank tests under conditional heteroskedasticity," Discussion Papers 09/02, University of Nottingham, Granger Centre for Time Series Econometrics.
    322. Gao, Jun & Gao, Xiang & Gu, Chen, 2023. "Forecasting European stock volatility: The role of the UK," International Review of Financial Analysis, Elsevier, vol. 89(C).
    323. Haoke Ding & Yinghua Ren & Wanhai You, 2022. "Does uncertainty granger-causes visitor arrivals? evidence from the MF-VAR model," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4193-4215, December.
    324. NAM, Deokwoo & LI, Xiaole, 2024. "The Stimulative Effects of Anticipated Government Spending Expansions : Evidence from Survey Forecasts," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 65(1), pages 1-31, June.
    325. Rüth, Sebastian K. & Simon, Camilla, 2020. "How Do Income and the Debt Position of Households Propagate Public into Private Spending?," Working Papers 0676, University of Heidelberg, Department of Economics.
    326. Clerides, Sofronis & Krokida, Styliani-Iris & Lambertides, Neophytos & Tsouknidis, Dimitris, 2022. "What matters for consumer sentiment in the euro area? World crude oil price or retail gasoline price?," Energy Economics, Elsevier, vol. 105(C).
    327. Herwartz, Helmut & Plödt, Martin, 2016. "The macroeconomic effects of oil price shocks: Evidence from a statistical identification approach," Journal of International Money and Finance, Elsevier, vol. 61(C), pages 30-44.
    328. Efthymios Pavlidis & Ivan Paya & David Peel, 2010. "Further empirical evidence on the consumption-real exchange rate anomaly," Working Papers 447022, Lancaster University Management School, Economics Department.
    329. William J. Procasky & Anwen Yin, 2022. "Forecasting high‐yield equity and CDS index returns: Does observed cross‐market informational flow have predictive power?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(8), pages 1466-1490, August.

  18. Silvia Gonçalves & Halbert White, 2002. "Maximum Likelihood and the Bootstrap for Nonlinear Dynamic Models," CIRANO Working Papers 2002s-41, CIRANO.

    Cited by:

    1. Seojeong Lee, 2014. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for GEL Estimators," Discussion Papers 2014-02, School of Economics, The University of New South Wales.
    2. Norman R. Swanson & Nii Ayi Armah, 2011. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 201103, Rutgers University, Department of Economics.
    3. Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    5. Neil Shephard & Kevin Sheppard & Robert F. Engle, 2008. "Fitting vast dimensional time-varying covariance models," Economics Series Working Papers 403, University of Oxford, Department of Economics.
    6. Stan Hurn & Ralf Becker, 2006. "Testing for nonlinearity in mean in the presence of heteroskedasticity," Stan Hurn Discussion Papers 2006-02, School of Economics and Finance, Queensland University of Technology.
    7. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    8. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    9. Valentina Corradi & Norman Swanson, 2013. "A Survey of Recent Advances in Forecast Accuracy Comparison Testing, with an Extension to Stochastic Dominance," Departmental Working Papers 201309, Rutgers University, Department of Economics.
    10. Jason Allen & Allan Gregory & Katsumi Shimotsu, 2008. "Empirical Likelihood Block Bootstrapping," Staff Working Papers 08-18, Bank of Canada.
    11. Corradi, Valentina & Iglesias, Emma M., 2008. "Bootstrap refinements for QML estimators of the GARCH(1,1) parameters," Journal of Econometrics, Elsevier, vol. 144(2), pages 500-510, June.
    12. Gloria Gonzalez-Rivera & Joao Henrique Mazzeu & Esther Ruiz & Helena Veiga, 2017. "A Bootstrap Approach for Generalized Autocontour Testing. Implications for VIX Forecast Densities," Working Papers 201709, University of California at Riverside, Department of Economics.
    13. Hong, H. & Scaillet, O. & Tamer, E., 2001. "A fast Subsampling Method for Nonlinear Dynamic Models," Papers 2001.09, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
    14. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics, Canadian Economics Association, vol. 51(3), pages 695-746, August.
    15. Silvia Gonçalves & Halbert White, 2001. "The Bootstrap of the Mean for Dependent Heterogeneous Arrays," CIRANO Working Papers 2001s-19, CIRANO.
    16. Andrea Fracasso & Giuseppe Vittucci Marzetti, 2012. "International R&D spillovers, absorptive capacity and relative backwardness: a panel smooth transition regression model," Department of Economics Working Papers 1203, Department of Economics, University of Trento, Italia.
    17. Norman R. Swanson & Valentina Corradi & Andres Fernandez, 2011. "Information in the Revision Process of Real-Time Datasets," Departmental Working Papers 201107, Rutgers University, Department of Economics.
    18. Corradi, Valentina & Swanson, Norman R., 2007. "Evaluation of dynamic stochastic general equilibrium models based on distributional comparison of simulated and historical data," Journal of Econometrics, Elsevier, vol. 136(2), pages 699-723, February.
    19. Lorenzo Camponovo & Olivier Scaillet & Fabio Trojani, 2016. "Predictability Hidden by Anomalous Observations," Papers 1612.05072, arXiv.org.
    20. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
    21. Chen, Xiaohong & Fan, Yanqin, 2007. "A Model Selection Test For Bivariate Failure-Time Data," Econometric Theory, Cambridge University Press, vol. 23(3), pages 414-439, June.
    22. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    23. Denisa BANULESCU-RADU & Elena Ivona DUMITRESCU, 2019. "Do High-frequency-based Measures Improve Conditional Covariance Forecasts?," LEO Working Papers / DR LEO 2709, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    24. Dovonon, Prosper & Gonçalves, Sílvia, 2017. "Bootstrapping the GMM overidentification test under first-order underidentification," Journal of Econometrics, Elsevier, vol. 201(1), pages 43-71.
    25. Valentina Corradi & Norman Swanson, 2004. "Predective Density and Conditional Confidence Interval Accuracy Tests," Departmental Working Papers 200423, Rutgers University, Department of Economics.
    26. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
    27. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
    28. James G. MacKinnon, 2006. "Bootstrap Methods In Econometrics," Working Paper 1028, Economics Department, Queen's University.
    29. Gonçalves Mazzeu, Joao Henrique & González-Rivera, Gloria & Ruiz Ortega, Esther & Veiga, Helena, 2016. "A Bootstrap Approach for Generalized Autocontour Testing," DES - Working Papers. Statistics and Econometrics. WS 23457, Universidad Carlos III de Madrid. Departamento de Estadística.
    30. De Lira Salvatierra, Irving & Patton, Andrew J., 2015. "Dynamic copula models and high frequency data," Journal of Empirical Finance, Elsevier, vol. 30(C), pages 120-135.
    31. Krenar Avdulaj & Jozef Barunik, 2013. "Are benefits from oil - stocks diversification gone? New evidence from a dynamic copula and high frequency data," Papers 1307.5981, arXiv.org, revised Feb 2015.
    32. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
    33. Lutz Kilian & Atsushi Inoue, 2004. "Bagging Time Series Models," Econometric Society 2004 North American Summer Meetings 110, Econometric Society.
    34. Valentina Corradi & Norman R. Swanson, 2003. "Bootstrap Conditional Distribution Tests In the Presence of Dynamic Misspecification," Departmental Working Papers 200311, Rutgers University, Department of Economics.
    35. Jack Fosten & Daniel Gutknecht, 2021. "Horizon confidence sets," Empirical Economics, Springer, vol. 61(2), pages 667-692, August.
    36. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Paper 1127, Economics Department, Queen's University.
    37. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    38. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    39. Arulampalam, Wiji & Corradi, Valentina & Gutknecht, Daniel, 2017. "Modeling heaped duration data: An application to neonatal mortality," Journal of Econometrics, Elsevier, vol. 200(2), pages 363-377.
    40. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    41. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    42. Kilian, Lutz & Inoue, Atsushi, 2005. "How Useful is Bagging in Forecasting Economic Time Series? A Case Study of US CPI Inflation," CEPR Discussion Papers 5304, C.E.P.R. Discussion Papers.
    43. Firmin Doko Tchatoka & Wenjie Wang, 2020. "Uniform Inference after Pretesting for Exogeneity," School of Economics and Public Policy Working Papers 2020-05, University of Adelaide, School of Economics and Public Policy.
    44. Richard G. Anderson & Hailong Qian & Robert H. Rasche, 2006. "Analysis of panel vector error correction models using maximum likelihood, the bootstrap, and canonical-correlation estimators," Working Papers 2006-050, Federal Reserve Bank of St. Louis.
    45. Wang, Wenjie, 2020. "On the Inconsistency of Nonparametric Bootstraps for the Subvector Anderson-Rubin Test," MPRA Paper 99109, University Library of Munich, Germany.
    46. Seojeong Lee, 2013. "Asymptotic Refinements of a Misspecification-Robust Bootstrap for Generalized Method of Moments Estimators," Discussion Papers 2013-09, School of Economics, The University of New South Wales.
    47. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
    48. Francesco Bravo & Federico Crudu, 2012. "Efficient bootstrap with weakly dependent processes," Discussion Papers 12/08, Department of Economics, University of York.
    49. Scaillet, Olivier & Trojani, Fabio & Camponovo, Lorenzo, 2016. "Comments on : Nonparametric Tail Risk, Stock Returns and the Macroeconomy," Working Papers unige:84999, University of Geneva, Geneva School of Economics and Management.
    50. Lavergne, Pascal & Bertail, Patrice, 2020. "Bootstrapping Quasi Likelihood Ratio Tests under Misspecification," TSE Working Papers 20-1102, Toulouse School of Economics (TSE).
    51. Philipp Kruse, 2020. "Can there only be one? – an empirical comparison of four models on social entrepreneurial intention formation," International Entrepreneurship and Management Journal, Springer, vol. 16(2), pages 641-665, June.
    52. Christian M. Dahl & Emma M. Iglesias, 2008. "The limiting properties of the QMLE in a general class of asymmetric volatility models," CREATES Research Papers 2008-38, Department of Economics and Business Economics, Aarhus University.
    53. Jansen, Dennis W. & Li, Qi & Wang, Zijun & Yang, Jian, 2008. "Fiscal policy and asset markets: A semiparametric analysis," Journal of Econometrics, Elsevier, vol. 147(1), pages 141-150, November.
    54. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
    55. Dahl Christian M & Iglesias Emma, 2011. "Modeling the Volatility-Return Trade-Off When Volatility May Be Nonstationary," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-32, February.
    56. Armstrong, Timothy B. & Bertanha, Marinho & Hong, Han, 2014. "A fast resample method for parametric and semiparametric models," Journal of Econometrics, Elsevier, vol. 179(2), pages 128-133.
    57. Valentina Corradi & Norman R. Swanson, 2003. "A Test for Comparing Multiple Misspecified Conditional Distributions," Departmental Working Papers 200314, Rutgers University, Department of Economics.
    58. Liu, Li & Bu, Ruijun & Pan, Zhiyuan & Xu, Yuhua, 2019. "Are financial returns really predictable out-of-sample?: Evidence from a new bootstrap test," Economic Modelling, Elsevier, vol. 81(C), pages 124-135.
    59. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    60. Bhardwaj, Geetesh & Corradi, Valentina & Swanson, Norman R., 2008. "A Simulation-Based Specification Test for Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 176-193, April.
    61. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
    62. Gutknecht, Daniel, 2011. "Nonclassical Measurement Error in a Nonlinear (Duration) Model," Economic Research Papers 270763, University of Warwick - Department of Economics.
    63. Gatfaoui, Hayette, 2013. "Translating financial integration into correlation risk: A weekly reporting's viewpoint for the volatility behavior of stock markets," Economic Modelling, Elsevier, vol. 30(C), pages 776-791.
    64. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.

  19. Silvia Gonçalves & Halbert White, 2001. "The Bootstrap of the Mean for Dependent Heterogeneous Arrays," CIRANO Working Papers 2001s-19, CIRANO.

    Cited by:

    1. Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Stan Hurn & Ralf Becker, 2006. "Testing for nonlinearity in mean in the presence of heteroskedasticity," Stan Hurn Discussion Papers 2006-02, School of Economics and Finance, Queensland University of Technology.
    3. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    4. Jason Allen & Allan Gregory & Katsumi Shimotsu, 2008. "Empirical Likelihood Block Bootstrapping," Staff Working Papers 08-18, Bank of Canada.
    5. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    6. Łukasz Lenart, 2016. "Generalized Resampling Scheme With Application to Spectral Density Matrix in Almost Periodically Correlated Class of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 369-404, May.
    7. Wied, Dominik & Weiß, Gregor N.F. & Ziggel, Daniel, 2016. "Evaluating Value-at-Risk forecasts: A new set of multivariate backtests," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 121-132.
    8. Jacek Leśkow & Rafał Synowiecki, 2010. "On bootstrapping periodic random arrays with increasing period," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(3), pages 253-279, May.
    9. Denis Kojevnikov, 2021. "The Bootstrap for Network Dependent Processes," Papers 2101.12312, arXiv.org.
    10. Norman R. Swanson & Valentina Corradi & Andres Fernandez, 2011. "Information in the Revision Process of Real-Time Datasets," Departmental Working Papers 201107, Rutgers University, Department of Economics.
    11. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    12. GONÇALVES, Sílvia & PERRON, Benoit, 2018. "Bootstrapping factor models with cross sectional dependence," Cahiers de recherche 2018-07, Universite de Montreal, Departement de sciences economiques.
    13. Ulrich Hounyo, 2014. "The wild tapered block bootstrap," CREATES Research Papers 2014-32, Department of Economics and Business Economics, Aarhus University.
    14. Choi, Ji-Eun & Shin, Dong Wan, 2019. "Moving block bootstrapping for a CUSUM test for correlation change," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 95-106.
    15. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    16. Valentina Corradi & Norman R. Swanson, 2003. "Bootstrap Conditional Distribution Tests In the Presence of Dynamic Misspecification," Departmental Working Papers 200311, Rutgers University, Department of Economics.
    17. Joseph P. Romano & Michael Wolf, 2006. "Improved Nonparametric Confidence Intervals in Time Series Regressions," IEW - Working Papers 273, Institute for Empirical Research in Economics - University of Zurich.
    18. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    19. Zacharias Psaradakis & Marian Vavra, 2018. "Bootstrap Assisted Tests of Symmetry for Dependent Data," Working and Discussion Papers WP 5/2018, Research Department, National Bank of Slovakia.
    20. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    21. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    22. Goncalves, Silvia & de Jong, Robert, 2003. "Consistency of the stationary bootstrap under weak moment conditions," Economics Letters, Elsevier, vol. 81(2), pages 273-278, November.
    23. A. Amendola & V. Candila, 2016. "Evaluation of volatility predictions in a VaR framework," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 695-709, May.
    24. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    25. Diep Duong & Norman Swanson, 2013. "Density and Conditional Distribution Based Specification Analysis," Departmental Working Papers 201312, Rutgers University, Department of Economics.
    26. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
    27. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    28. Bakshi, Gurdip & Panayotov, George, 2013. "Predictability of currency carry trades and asset pricing implications," Journal of Financial Economics, Elsevier, vol. 110(1), pages 139-163.
    29. Barnett, Alina & Mumtaz, Haroon & Theodoridis, Konstantinos, 2014. "Forecasting UK GDP growth and inflation under structural change. A comparison of models with time-varying parameters," International Journal of Forecasting, Elsevier, vol. 30(1), pages 129-143.
    30. Calhoun, Gray, 2014. "Block Bootstrap Consistency Under Weak Assumptions," Staff General Research Papers Archive 34313, Iowa State University, Department of Economics.
    31. Valentina Corradi & Norman R. Swanson, 2003. "A Test for Comparing Multiple Misspecified Conditional Distributions," Departmental Working Papers 200314, Rutgers University, Department of Economics.
    32. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
    33. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    34. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.

Articles

  1. Gonçalves, Sílvia & Herrera, Ana María & Kilian, Lutz & Pesavento, Elena, 2021. "Impulse response analysis for structural dynamic models with nonlinear regressors," Journal of Econometrics, Elsevier, vol. 225(1), pages 107-130.
    See citations under working paper version above.
  2. Gonçalves, Sílvia & Perron, Benoit, 2020. "Bootstrapping factor models with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 218(2), pages 476-495.
    See citations under working paper version above.
  3. Prosper Dovonon & Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2019. "Bootstrapping High-Frequency Jump Tests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 793-803, April.
    See citations under working paper version above.
  4. Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 56(4), pages 1139-1203, September.

    Cited by:

    1. Jinhwan Kim & Rodrigo S. Verdi & Benjamin P. Yost, 2020. "Do Firms Strategically Internalize Disclosure Spillovers? Evidence from Cash‐Financed M&As," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 58(5), pages 1249-1297, December.
    2. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2024. "Cluster-Robust Jackknife and Bootstrap Inference for Binary Response Models," Working Paper 1515, Economics Department, Queen's University.
    3. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust," Stata Journal, StataCorp LLC, vol. 23(4), pages 942-982, December.
    4. Fiechter, Peter & Landsman, Wayne R. & Peasnell, Kenneth & Renders, Annelies, 2024. "Do industry-specific accounting standards matter for capital allocation decisions?," Journal of Accounting and Economics, Elsevier, vol. 77(2).
    5. Miao Liu, 2022. "Assessing Human Information Processing in Lending Decisions: A Machine Learning Approach," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 60(2), pages 607-651, May.
    6. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2022. "Fast and Reliable Jackknife and Bootstrap Methods for Cluster-Robust Inference," Working Paper 1485, Economics Department, Queen's University.
    7. Ana Albuquerque & Benjamin Bennett & Cláudia Custódio & Dragana Cvijanović, 2023. "CEO compensation and real estate prices: pay for luck or pay for action?," Review of Accounting Studies, Springer, vol. 28(4), pages 2401-2447, December.
    8. James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2022. "Cluster-Robust Inference: A Guide to Empirical Practice," Papers 2205.03285, arXiv.org.
    9. Cao, Zhangfan & Chen, Steven Xianglong & Harakeh, Mostafa & Lee, Edward, 2022. "Do non-financial factors influence corporate dividend policies? Evidence from business strategy," International Review of Financial Analysis, Elsevier, vol. 82(C).
    10. Cai Yong & Canay Ivan A. & Kim Deborah & Shaikh Azeem M., 2023. "On the Implementation of Approximate Randomization Tests in Linear Models with a Small Number of Clusters," Journal of Econometric Methods, De Gruyter, vol. 12(1), pages 85-103, January.
    11. Abakah, Alex Annan & Kim, Gunchang & Somé, Hyacinthe Yirlier, 2024. "Social networks and start-up funding," Finance Research Letters, Elsevier, vol. 64(C).
    12. James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2023. "Testing for the appropriate level of clustering in linear regression models," Papers 2301.04522, arXiv.org, revised Mar 2023.
    13. James G. MacKinnon & Morten {O}rregaard Nielsen & Matthew D. Webb, 2024. "Cluster-robust jackknife and bootstrap inference for logistic regression models," Papers 2406.00650, arXiv.org, revised May 2025.
    14. Kris Hardies & Sarowar Hossain & Larelle (Ellie) Chapple, 2021. "Archival research on audit partners: assessing the research field and recommendations for future research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(3), pages 4209-4256, September.
    15. Harakeh, Mostafa & El-Gammal, Walid & Matar, Ghida, 2019. "Female directors, earnings management, and CEO incentive compensation: UK evidence," Research in International Business and Finance, Elsevier, vol. 50(C), pages 153-170.
    16. Matthias Breuer & Ed Dehaan, 2024. "Using and Interpreting Fixed Effects Models," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 62(4), pages 1183-1226, September.
    17. Kevin C. W. Chen & Tai‐Yuan Chen & Weifang Han & Hongqi Yuan, 2022. "Auditors Under Fire: The Association Between Audit Errors and the Career Setbacks of Individual Auditors," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 60(3), pages 853-900, June.
    18. Wessel M Badenhorst & Rieka von Well, 2023. "The Value‐relevance of Fair Value Measurement for Inventories," Australian Accounting Review, CPA Australia, vol. 33(2), pages 135-159, June.
    19. Huang, Yin-Siang & Lee, Cheng-Few & Lin, Chih-Yung, 2023. "Applications of fixed effect models to managerial risk-taking incentives," The Quarterly Review of Economics and Finance, Elsevier, vol. 92(C), pages 249-261.
    20. Michael P. Leung, 2021. "Network Cluster-Robust Inference," Papers 2103.01470, arXiv.org, revised Feb 2023.
    21. Darendeli, Alper & Fiechter, Peter & Hitz, Jörg-Markus & Lehmann, Nico, 2022. "The role of corporate social responsibility (CSR) information in supply-chain contracting: Evidence from the expansion of CSR rating coverage," Journal of Accounting and Economics, Elsevier, vol. 74(2).
    22. Breuer Matthias, 2025. "Another Way Forward: Comments on Ohlson’s Critique of Empirical Accounting Research," Accounting, Economics, and Law: A Convivium, De Gruyter, vol. 15(1), pages 123-139.
    23. Balakrishnan, Karthik & De George, Emmanuel T. & Ertan, Aytekin & Scobie, Hannah, 2021. "Economic consequences of mandatory auditor reporting to bank regulators," Journal of Accounting and Economics, Elsevier, vol. 72(2).
    24. Frank S. Zhou & Yuqing Zhou, 2020. "The Dog that Did Not Bark: Limited Price Efficiency and Strategic Nondisclosure," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 58(1), pages 155-197, March.
    25. Harakeh, Mostafa, 2020. "Dividend policy and corporate investment under information shocks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 65(C).
    26. Peter Fiechter & Jörg‐Markus Hitz & Nico Lehmann, 2022. "Real Effects of a Widespread CSR Reporting Mandate: Evidence from the European Union's CSR Directive," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 60(4), pages 1499-1549, September.
    27. Raphael Duguay, 2022. "The Economic Consequences of Financial Audit Regulation in the Charitable Sector," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 60(4), pages 1463-1498, September.
    28. Nicholas M. Guest, 2021. "The Information Role of the Media in Earnings News," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 59(3), pages 1021-1076, June.
    29. Dane M. Christensen & Hengda Jin & Suhas A. Sridharan & Laura A. Wellman, 2022. "Hedging on the Hill: Does Political Hedging Reduce Firm Risk?," Management Science, INFORMS, vol. 68(6), pages 4356-4379, June.

  5. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    See citations under working paper version above.
  6. Hounyo, Ulrich & Gonçalves, Sílvia & Meddahi, Nour, 2017. "Bootstrapping Pre-Averaged Realized Volatility Under Market Microstructure Noise," Econometric Theory, Cambridge University Press, vol. 33(4), pages 791-838, August.
    See citations under working paper version above.
  7. Dovonon, Prosper & Gonçalves, Sílvia, 2017. "Bootstrapping the GMM overidentification test under first-order underidentification," Journal of Econometrics, Elsevier, vol. 201(1), pages 43-71. See citations under working paper version above.
  8. Sílvia Gonçalves & Benoit Perron & Antoine Djogbenou, 2017. "Bootstrap Prediction Intervals for Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 53-69, January.
    See citations under working paper version above.
  9. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.

    Cited by:

    1. Barreto, Leonardo & Finkelstein Shapiro, Alan & Nuguer, Victoria, 2023. "Domestic barriers to entry and external vulnerability in emerging economies," Journal of Economic Dynamics and Control, Elsevier, vol. 154(C).
    2. Mike G. Tsionas & Subal C. Kumbhakar, 2023. "Proxy variable estimation of productivity and efficiency," Southern Economic Journal, John Wiley & Sons, vol. 89(3), pages 885-923, January.
    3. Okui, Ryo & Yanagi, Takahide, 2019. "Panel data analysis with heterogeneous dynamics," Journal of Econometrics, Elsevier, vol. 212(2), pages 451-475.
    4. Giuseppe Cavaliere & S'ilvia Gonc{c}alves & Morten {O}rregaard Nielsen & Edoardo Zanelli, 2022. "Bootstrap inference in the presence of bias," Papers 2208.02028, arXiv.org, revised Nov 2023.
    5. Dashan Huang & Jiangyuan Li & Liyao Wang & Guofu Zhou, 2020. "Time series momentum: Is it there?," CEMA Working Papers 717, China Economics and Management Academy, Central University of Finance and Economics.
    6. Ryo Okui & Takahide Yanagi, 2018. "Kernel Estimation for Panel Data with Heterogeneous Dynamics," Papers 1802.08825, arXiv.org, revised May 2019.
    7. Xiao, Jiaqi & Juodis, Arturas & Karavias, Yiannis & Sarafidis, Vasilis, 2021. "Improved Tests for Granger Non-Causality in Panel Data," MPRA Paper 107180, University Library of Munich, Germany.
    8. Norkutė, Milda & Westerlund, Joakim, 2019. "The factor analytical method for interactive effects dynamic panel models with moving average errors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 83-104.
    9. Carneiro, Anabela & Portugal, Pedro & Raposo, Pedro & Rodrigues, Paulo M.M., 2023. "The persistence of wages," Journal of Econometrics, Elsevier, vol. 233(2), pages 596-611.
    10. Ivan Fernandez-Val & Wayne Yuan Gao & Yuan Liao & Francis Vella, 2022. "Dynamic Heterogeneous Distribution Regression Panel Models, with an Application to Labor Income Processes," Papers 2202.04154, arXiv.org, revised Jul 2025.
    11. Antonio F. Galvao & Thomas Parker & Zhijie Xiao, 2021. "Bootstrap inference for panel data quantile regression," Papers 2111.03626, arXiv.org.
    12. Thomas Gemert & Lenard Lieb & Tania Treibich, 2022. "Local fiscal multipliers of different government spending categories," Empirical Economics, Springer, vol. 63(5), pages 2551-2575, November.
    13. Andrey G. Maksimov & Marina S. Telezhkina, 2024. "Similarity Of Structural Changes: The Case Of University Enrollment Rates," HSE Working papers WP BRP 271/EC/2024, National Research University Higher School of Economics.
    14. Ayden Higgins & Koen Jochmans, 2024. "Bootstrap Inference for Fixed‐Effect Models," Econometrica, Econometric Society, vol. 92(2), pages 411-427, March.
    15. Chen, Weihao & Cizek, Pavel, 2023. "Bias-Corrected Instrumental Variable Estimation in Linear Dynamic Panel Data Models," Discussion Paper 2023-028, Tilburg University, Center for Economic Research.
    16. Lu, Xun & Su, Liangjun, 2023. "Uniform inference in linear panel data models with two-dimensional heterogeneity," Journal of Econometrics, Elsevier, vol. 235(2), pages 694-719.
    17. Ayden Higgins & Koen Jochmans, 2025. "Inference in dynamic models for panel data using the moving block bootstrap," Papers 2502.08311, arXiv.org.
    18. Shuowen Chen, 2022. "Indirect Inference for Nonlinear Panel Models with Fixed Effects," Papers 2203.10683, arXiv.org, revised Apr 2022.
    19. Elizabeth Schroeder, 2016. "Dynamic labor supply adjustment with bias correction," Empirical Economics, Springer, vol. 51(4), pages 1623-1640, December.
    20. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    21. Samaresh Bardhan & Rajesh Sharma & Vivekananda Mukherjee, 2019. "Threshold Effect of Bank-specific Determinants of Non-performing Assets: An Application in Indian Banking," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 18(1_suppl), pages 1-34, April.
    22. Chihwa Kao & Long Liu & Rui Sun, 2021. "A bias-corrected fixed effects estimator in the dynamic panel data model," Empirical Economics, Springer, vol. 60(1), pages 205-225, January.
    23. Arturas Juodis & Yiannis Karavias, 2019. "Partially heterogeneous tests for Granger non-causality in panel data," Bank of Lithuania Working Paper Series 59, Bank of Lithuania.
    24. Feng, Xingdong & Li, Wenyu & Zhu, Qianqian, 2024. "Estimation and bootstrapping under spatiotemporal models with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 238(1).
    25. Li, Yun & Nie, Dan & Zhao, Xingang & Li, Yanbin, 2017. "Market structure and performance: An empirical study of the Chinese solar cell industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 78-82.
    26. Khalaf, Lynda & Saunders, Charles J., 2020. "Monte Carlo two-stage indirect inference (2SIF) for autoregressive panels," Journal of Econometrics, Elsevier, vol. 218(2), pages 419-434.
    27. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
    28. De Vos, Ignace & Stauskas, Ovidijus, 2021. "Bootstrap Improved Inference for Factor-Augmented Regressions with CCE," Working Papers 2021:16, Lund University, Department of Economics.
    29. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.
    30. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.

  10. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2014. "Bootstrap Inference for Pre-averaged Realized Volatility based on Nonoverlapping Returns," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 679-707.
    See citations under working paper version above.
  11. Gonçalves, Sílvia & Perron, Benoit, 2014. "Bootstrapping factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
    See citations under working paper version above.
  12. Dovonon, Prosper & Gonçalves, Sílvia & Meddahi, Nour, 2013. "Bootstrapping realized multivariate volatility measures," Journal of Econometrics, Elsevier, vol. 172(1), pages 49-65.
    See citations under working paper version above.
  13. Gonçalves, Sílvia & Vogelsang, Timothy J., 2011. "Block Bootstrap Hac Robust Tests: The Sophistication Of The Naive Bootstrap," Econometric Theory, Cambridge University Press, vol. 27(4), pages 745-791, August.

    Cited by:

    1. Robin Greenwood & Samuel G. Hanson, 2013. "Issuer Quality and Corporate Bond Returns," The Review of Financial Studies, Society for Financial Studies, vol. 26(6), pages 1483-1525.
    2. Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 56(4), pages 1139-1203, September.
    3. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    4. Ross McKitrick & Timothy Vogelsang, 2011. "Multivariate trend comparisons between autocorrelated climate series with general trend regressors," Working Papers 1109, University of Guelph, Department of Economics and Finance.
    5. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
    6. Surajit Ray & N. E. Savin, 2008. "The performance of heteroskedasticity and autocorrelation robust tests: a Monte Carlo study with an application to the three-factor Fama-French asset-pricing model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 91-109.
    7. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2020. "Wild Bootstrap and Asymptotic Inference with Multiway Clustering," CREATES Research Papers 2020-06, Department of Economics and Business Economics, Aarhus University.
    8. Hwang, Jungbin & Sun, Yixiao, 2015. "Asymptotic F and t Tests in an Efficient GMM Setting," University of California at San Diego, Economics Working Paper Series qt1c62d8xf, Department of Economics, UC San Diego.
    9. Andrea Fracasso & Giuseppe Vittucci Marzetti, 2012. "International R&D spillovers, absorptive capacity and relative backwardness: a panel smooth transition regression model," Department of Economics Working Papers 1203, Department of Economics, University of Trento, Italia.
    10. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    11. Rho, Seunghwa & Vogelsang, Timothy J., 2021. "Inference in time series models using smoothed-clustered standard errors," Journal of Econometrics, Elsevier, vol. 224(1), pages 113-133.
    12. Sun, Yixiao, 2013. "Fixed-smoothing Asymptotics in a Two-step GMM Framework," University of California at San Diego, Economics Working Paper Series qt64x4z265, Department of Economics, UC San Diego.
    13. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    14. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    15. Stephan Smeekes & Joakim Westerlund, 2019. "Robust block bootstrap panel predictability tests," Econometric Reviews, Taylor & Francis Journals, vol. 38(9), pages 1089-1107, October.
    16. Robert Adamek & Stephan Smeekes & Ines Wilms, 2020. "Lasso Inference for High-Dimensional Time Series," Papers 2007.10952, arXiv.org, revised Sep 2022.
    17. Karavias, Yiannis & Symeonides, Spyridon D. & Tzavalis, Elias, 2018. "Higher order expansions for error variance matrix estimates in the Gaussian AR(1) linear regression model," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 54-59.
    18. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LLC, vol. 18(4), pages 951-980, December.
    19. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    20. Zhenxin Wang & Shaoping Wang & Yayi Yan, 2024. "Sieve Bootstrap for Fixed-b Phillips–Perron Unit Root Test," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3181-3205, December.
    21. Hwang, Taeyoon & Vogelsang, Timothy J., 2024. "Some fixed-b results for regressions with high frequency data over long spans," Journal of Econometrics, Elsevier, vol. 244(2).
    22. Ulrich K. Müller & Mark W. Watson, 2015. "Low-Frequency Econometrics," NBER Working Papers 21564, National Bureau of Economic Research, Inc.
    23. Zhang, Xianyang, 2016. "Fixed-smoothing asymptotics in the generalized empirical likelihood estimation framework," Journal of Econometrics, Elsevier, vol. 193(1), pages 123-146.
    24. Cheol-Keun Cho & Timothy J. Vogelsang, 2016. "Fixed- b Inference for Testing Structural Change in a Time Series Regression," Econometrics, MDPI, vol. 5(1), pages 1-26, December.
    25. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.
    26. Xianyang Zhang & Xiaofeng Shao, 2016. "On the coverage bound problem of empirical likelihood methods for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 395-421, March.

  14. Gonçalves, Sílvia, 2011. "The Moving Blocks Bootstrap For Panel Linear Regression Models With Individual Fixed Effects," Econometric Theory, Cambridge University Press, vol. 27(5), pages 1048-1082, October.

    Cited by:

    1. Eguren-Martin, Fernando & O'Neill, Cian & Sokol, Andrej & von dem Berge, Lukas, 2024. "Capital flows-at-risk: Push, pull and the role of policy," Journal of International Money and Finance, Elsevier, vol. 147(C).
    2. Timothy Conley & Silvia Gonçalves & Christian Hansen, 2018. "Inference with Dependent Data in Accounting and Finance Applications," Journal of Accounting Research, John Wiley & Sons, Ltd., vol. 56(4), pages 1139-1203, September.
    3. Andrea Fracasso & Giuseppe Vittucci Marzetti, 2012. "International R&D spillovers, absorptive capacity and relative backwardness: a panel smooth transition regression model," Department of Economics Working Papers 1203, Department of Economics, University of Trento, Italia.
    4. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    5. Trapani, Lorenzo, 2013. "On bootstrapping panel factor series," Journal of Econometrics, Elsevier, vol. 172(1), pages 127-141.
    6. Andrey G. Maksimov & Marina S. Telezhkina, 2024. "Similarity Of Structural Changes: The Case Of University Enrollment Rates," HSE Working papers WP BRP 271/EC/2024, National Research University Higher School of Economics.
    7. Galvao, Antonio F. & Montes-Rojas, Gabriel & Sosa-Escudero, Walter & Wang, Liang, 2013. "Tests for skewness and kurtosis in the one-way error component model," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 35-52.
    8. Chen, Bin & Huang, Liquan, 2018. "Nonparametric testing for smooth structural changes in panel data models," Journal of Econometrics, Elsevier, vol. 202(2), pages 245-267.
    9. Svetlana Makarova, 2018. "European Central Bank Footprints On Inflation Forecast Uncertainty," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 637-652, January.
    10. Ying Liao & Cuixia Li & Lei Jiang & Liang Peng, 2021. "Quantifying Diseconomies Of Scale For Mutual Funds," Annals of Economics and Finance, Society for AEF, vol. 22(1), pages 1-24, May.

  15. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.

    Cited by:

    1. Yu-Min Yen, 2013. "Testing Jumps via False Discovery Rate Control," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    2. Lütkepohl, Helmut & Proietti, Tommaso, 2011. "Does the Box-Cox transformation help in forecasting macroeconomic time series?," Working Papers 08/2011, University of Sydney Business School, Discipline of Business Analytics.
    3. Lu, Xinjie & Ma, Feng & Wang, Jiqian & Wang, Jianqiong, 2020. "Examining the predictive information of CBOE OVX on China’s oil futures volatility: Evidence from MS-MIDAS models," Energy, Elsevier, vol. 212(C).
    4. Taylor, Nick, 2017. "Realised variance forecasting under Box-Cox transformations," International Journal of Forecasting, Elsevier, vol. 33(4), pages 770-785.
    5. Chen, Wang & Lu, Xinjie & Wang, Jiqian, 2022. "Modeling and managing stock market volatility using MRS-MIDAS model," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 625-635.
    6. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    7. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers halshs-00387286, HAL.
    8. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    9. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    10. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    11. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.

  16. Sílvia Gonçalves & Nour Meddahi, 2009. "Bootstrapping Realized Volatility," Econometrica, Econometric Society, vol. 77(1), pages 283-306, January.

    Cited by:

    1. Yu-Min Yen, 2013. "Testing Jumps via False Discovery Rate Control," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.
    2. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    3. Anisha Ghosh & Oliver Linton, 2019. "Estimation with Mixed Data Frequencies: A Bias-Correction Approach," CeMMAP working papers CWP65/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Tim Bollerslev & Andrew J. Patton & Rogier Quaedvlieg, 2016. "Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions," CREATES Research Papers 2016-10, Department of Economics and Business Economics, Aarhus University.
    5. Ole E. Barndorff-Nielsen & Sven Erik Graversen & Jean Jacod & Neil Shephard, 2005. "Limit theorems for bipower variation in financial econometrics," OFRC Working Papers Series 2005fe09, Oxford Financial Research Centre.
    6. Yuma Uehara, 2023. "Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 533-565, August.
    7. Gustavo Fruet Dias & Karsten Schweiker, 2024. "Integrated Variance Estimation for Assets Traded in Multiple Venues," University of East Anglia School of Economics Working Paper Series 2024-04, School of Economics, University of East Anglia, Norwich, UK..
    8. Patrick M. Kline & Andres Santos, 2011. "Higher Order Properties of the Wild Bootstrap Under Misspecification," NBER Working Papers 16793, National Bureau of Economic Research, Inc.
    9. Ole E. Barndorff-Nielsen & Neil Shephard, 2005. "Variation, jumps, market frictions and high frequency data in financial econometrics," Economics Papers 2005-W16, Economics Group, Nuffield College, University of Oxford.
    10. Ait-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2005. "Ultra high frequency volatility estimation with dependent microstructure noise," Discussion Paper Series 1: Economic Studies 2005,30, Deutsche Bundesbank.
    11. Yeh, Jin-Huei & Yun, Mu-Shu, 2023. "Assessing jump and cojumps in financial asset returns with applications in futures markets," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    12. Ole E Barndorff-Nielsen & Peter Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," OFRC Working Papers Series 2006fe05, Oxford Financial Research Centre.
    13. He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
    14. Oliver Linton & Yoon-Jae Whang & Yu-Min Yen, 2013. "A nonparametric test of a strong leverage hypothesis," CeMMAP working papers 28/13, Institute for Fiscal Studies.
    15. Ulrich Hounyo & Silvia Gonçalves & Nour Meddahi, 2016. "Bootstrapping pre-averaged realized volatility under market microstructure noise," CIRANO Working Papers 2016s-25, CIRANO.
    16. Dovonon, Prosper & Goncalves, Silvia & Hounyo, Ulrich & Meddahi, Nour, 2017. "Bootstrapping high-frequency jump tests," IDEI Working Papers 870, Institut d'Économie Industrielle (IDEI), Toulouse.
    17. Li, Jia & Todorov, Viktor & Tauchen, George & Chen, Rui, 2017. "Mixed-scale jump regressions with bootstrap inference," Journal of Econometrics, Elsevier, vol. 201(2), pages 417-432.
    18. Ulrich Hounyo, 2013. "Bootstrapping realized volatility and realized beta under a local Gaussianity assumption," CREATES Research Papers 2013-30, Department of Economics and Business Economics, Aarhus University.
    19. Tim Bollerslev & Jia Li & Yuan Xue, 2016. "Volume, Volatility and Public News Announcements," CREATES Research Papers 2016-19, Department of Economics and Business Economics, Aarhus University.
    20. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
    21. Tim Bollerslev & Jia Li & Leonardo Salim Saker Chaves, 2021. "Generalized Jump Regressions for Local Moments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1015-1025, October.
    22. Neil Shephard & Ole E. Barndorff-Nielsen & Asger Lunde, 2006. "Subsampling realised kernels," Economics Series Working Papers 278, University of Oxford, Department of Economics.
    23. Tim Bollerslev & Jia Li & Andrew J. Patton & Rogier Quaedvlieg, 2020. "Realized Semicovariances," Econometrica, Econometric Society, vol. 88(4), pages 1515-1551, July.
    24. Vortelinos, Dimitrios I., 2010. "The properties of realized correlation: Evidence from the French, German and Greek equity markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 273-290, August.
    25. Sílvia Gonçalves & Ulrich Hounyo & Nour Meddahi, 2013. "Bootstrap inference for pre-averaged realized volatility based on non-overlapping returns," CREATES Research Papers 2013-07, Department of Economics and Business Economics, Aarhus University.
    26. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," CREATES Research Papers 2016-15, Department of Economics and Business Economics, Aarhus University.
    27. Diego Amaya & Peter Christoffersen & Kris Jacobs & Aurelio Vasquez, 2013. "Does Realized Skewness Predict the Cross-Section of Equity Returns?," CREATES Research Papers 2013-41, Department of Economics and Business Economics, Aarhus University.
    28. Chaker, Selma, 2017. "On high frequency estimation of the frictionless price: The use of observed liquidity variables," Journal of Econometrics, Elsevier, vol. 201(1), pages 127-143.
    29. Jim Griffin & Jia Liu & John M. Maheu, 2021. "Bayesian Nonparametric Estimation of Ex Post Variance [Out of Sample Forecasts of Quadratic Variation]," Journal of Financial Econometrics, Oxford University Press, vol. 19(5), pages 823-859.
    30. Jean Jacod & Yingying Li & Per A. Mykland & Mark Podolskij & Mathias Vetter, 2007. "Microstructure Noise in the Continuous Case: The Pre-Averaging Approach - JLMPV-9," CREATES Research Papers 2007-43, Department of Economics and Business Economics, Aarhus University.
    31. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers halshs-00387286, HAL.
    32. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
    33. Julien Chevallier & Benoît Sévi, 2009. "On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and forecasting," Working Papers hal-04140871, HAL.
    34. Neil Shephard & Kevin Sheppard, 2012. "Efficient and feasible inference for the components of financial variation using blocked multipower variation," Economics Series Working Papers 593, University of Oxford, Department of Economics.
    35. Hwang, Eunju & Shin, Dong Wan, 2018. "Two-stage stationary bootstrapping for bivariate average realized volatility matrix under market microstructure noise and asynchronicity," Journal of Econometrics, Elsevier, vol. 202(2), pages 178-195.
    36. Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2015. "Nonparametric likelihood for volatility under high frequency data," STICERD - Econometrics Paper Series /2015/581, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    37. Hwang, Eunju & Shin, Dong Wan, 2014. "A bootstrap test for jumps in financial economics," Economics Letters, Elsevier, vol. 125(1), pages 74-78.
    38. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2007. "Microstructure noise in the continuous case: the pre-averaging approach," Technical Reports 2007,41, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    39. Hounyo, Ulrich, 2017. "Bootstrapping integrated covariance matrix estimators in noisy jump–diffusion models with non-synchronous trading," Journal of Econometrics, Elsevier, vol. 197(1), pages 130-152.
    40. Bollerslev, Tim & Patton, Andrew J. & Quaedvlieg, Rogier, 2016. "Exploiting the errors: A simple approach for improved volatility forecasting," Journal of Econometrics, Elsevier, vol. 192(1), pages 1-18.
    41. Amir Safari & Detlef Seese, 2010. "Behavior of realized volatility and correlation in exchange markets," International Econometric Review (IER), Econometric Research Association, vol. 2(2), pages 73-96, September.
    42. Yacine Ait-Sahalia & Jialin Yu, 2009. "High frequency market microstructure noise estimates and liquidity measures," Papers 0906.1444, arXiv.org.
    43. Hounyo, Ulrich & Varneskov, Rasmus T., 2017. "A local stable bootstrap for power variations of pure-jump semimartingales and activity index estimation," Journal of Econometrics, Elsevier, vol. 198(1), pages 10-28.
    44. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2005. "Edgeworth Expansions for Realized Volatility and Related Estimators," NBER Technical Working Papers 0319, National Bureau of Economic Research, Inc.
    45. Nath, H. (Mindi) B. & Kim, Jae H. & Brooks, Robert D., 2012. "Realized dual-betas for leading Australian stocks: An evaluation of the estimation methods and the effect of the sampling interval," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 83(C), pages 10-22.
    46. Tim Bollerslev & Jia Li & Zhipeng Liao, 2021. "Fixed‐k inference for volatility," Quantitative Economics, Econometric Society, vol. 12(4), pages 1053-1084, November.
    47. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    48. Torben G. Andersen & Viktor Todorov, 2009. "Realized Volatility and Multipower Variation," CREATES Research Papers 2009-49, Department of Economics and Business Economics, Aarhus University.
    49. Peter Reinhard Hansen & Guillaume Horel, 2009. "Quadratic Variation by Markov Chains," CREATES Research Papers 2009-13, Department of Economics and Business Economics, Aarhus University.
    50. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    51. BAUWENS, Luc & STORTI, Giuseppe, 2013. "Computationally efficient inference procedures for vast dimensional realized covariance models," LIDAM Reprints CORE 2469, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    52. Holger Dette & Vasyl Golosnoy & Janosch Kellermann, 2023. "The effect of intraday periodicity on realized volatility measures," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(3), pages 315-342, April.
    53. Dimpfl, Thomas & Schweikert, Karsten, 2023. "Information shares for markets with partially overlapping trading hours," Journal of Banking & Finance, Elsevier, vol. 154(C).
    54. Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
    55. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    56. Shin Kanaya & Taisuke Otsu, 2011. "Large Deviations of Realized Volatility," Cowles Foundation Discussion Papers 1798, Cowles Foundation for Research in Economics, Yale University.
    57. Mikkel Bennedsen & Ulrich Hounyo & Asger Lunde & Mikko S. Pakkanen, 2016. "The Local Fractional Bootstrap," Papers 1605.00868, arXiv.org, revised Oct 2017.
    58. Ulrich Hounyo, 2014. "Bootstrapping integrated covariance matrix estimators in noisy jump-diffusion models with non-synchronous trading," CREATES Research Papers 2014-35, Department of Economics and Business Economics, Aarhus University.
    59. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    60. Shin, Dong Wan & Hwang, Eunju, 2015. "A Lagrangian multiplier test for market microstructure noise with applications to sampling interval determination for realized volatilities," Economics Letters, Elsevier, vol. 129(C), pages 95-99.
    61. Hounyo, Ulrich & Liu, Zhi & Varneskov, Rasmus T., 2025. "A modified wild bootstrap procedure for Laplace transforms of volatility," Economics Letters, Elsevier, vol. 247(C).
    62. Mykland, Per A. & Zhang, Lan, 2016. "Between data cleaning and inference: Pre-averaging and robust estimators of the efficient price," Journal of Econometrics, Elsevier, vol. 194(2), pages 242-262.
    63. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    64. Patton, Andrew J., 2011. "Data-based ranking of realised volatility estimators," Journal of Econometrics, Elsevier, vol. 161(2), pages 284-303, April.
    65. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.
    66. Ulrich Hounyo & Zhi Liu & Rasmus T. Varneskov, 2023. "Bootstrapping Laplace transforms of volatility," Quantitative Economics, Econometric Society, vol. 14(3), pages 1059-1103, July.
    67. Kalnina, Ilze, 2011. "Subsampling high frequency data," Journal of Econometrics, Elsevier, vol. 161(2), pages 262-283, April.

  17. Silvia Goncalves & Nour Meddahi, 2008. "Edgeworth Corrections for Realized Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 139-162.

    Cited by:

    1. He, Lidan & Liu, Qiang & Liu, Zhi, 2020. "Edgeworth corrections for spot volatility estimator," Statistics & Probability Letters, Elsevier, vol. 164(C).
    2. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2005. "Edgeworth Expansions for Realized Volatility and Related Estimators," NBER Technical Working Papers 0319, National Bureau of Economic Research, Inc.
    3. Dovonon, Prosper & Goncalves, Silvia & Meddahi, Nour, 2010. "Bootstrapping realized multivariate volatility measures," MPRA Paper 40123, University Library of Munich, Germany.
    4. Ulrich Hounyo & Bezirgen Veliyev, 2015. "Validity of Edgeworth expansions for realized volatility estimators," CREATES Research Papers 2015-21, Department of Economics and Business Economics, Aarhus University.
    5. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2019. "Empirical likelihood for high frequency data," LSE Research Online Documents on Economics 100320, London School of Economics and Political Science, LSE Library.
    6. Lidan He & Qiang Liu & Zhi Liu & Andrea Bucci, 2024. "Correcting spot power variation estimator via Edgeworth expansion," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 921-945, November.

  18. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.

    Cited by:

    1. Clark, Todd E. & McCracken, Michael W., 2015. "Nested forecast model comparisons: A new approach to testing equal accuracy," Journal of Econometrics, Elsevier, vol. 186(1), pages 160-177.
    2. Giuseppe Cavaliere & Morten Ørregaard Nielsen & Robert Taylor, 2017. "Quasi-Maximum Likelihood Estimation and Bootstrap Inference in Fractional Time Series Models with Heteroskedasticity of Unknown Form," CREATES Research Papers 2017-02, Department of Economics and Business Economics, Aarhus University.
    3. Lütkepohl, Helmut & Schlaak, Thore, 2019. "Bootstrapping impulse responses of structural vector autoregressive models identified through GARCH," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 41-61.
    4. Tommaso Proietti & Alessandro Giovannelli, 2018. "A Durbin–Levinson regularized estimator of high-dimensional autocovariance matrices," Biometrika, Biometrika Trust, vol. 105(4), pages 783-795.
    5. Todd E. Clark & Michael W. McCracken, 2009. "In-sample tests of predictive ability: a new approach," Research Working Paper RWP 09-10, Federal Reserve Bank of Kansas City.
    6. Corradi, Valentina & Iglesias, Emma M., 2008. "Bootstrap refinements for QML estimators of the GARCH(1,1) parameters," Journal of Econometrics, Elsevier, vol. 144(2), pages 500-510, June.
    7. Giuseppe Cavaliere & Rasmus Søndergaard Pedersen & Anders Rahbek, 2018. "The Fixed Volatility Bootstrap for a Class of Arch(q) Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 920-941, November.
    8. Inoue, Atsushi & Jordà , Òscar & Kuersteiner, Guido, 2024. "Inference for Local Projections," CEPR Discussion Papers 19379, C.E.P.R. Discussion Papers.
    9. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2014. "Inference in VARs with Conditional Heteroskedasticity of Unknown Form," Working Papers 14-21, University of Mannheim, Department of Economics.
    10. Salish, Nazarii & Gleim, Alexander, 2019. "A moment-based notion of time dependence for functional time series," Journal of Econometrics, Elsevier, vol. 212(2), pages 377-392.
    11. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    12. Ron Alquist & Gregory Bauer & Antonio Diez de los Rios, 2014. "What Does the Convenience Yield Curve Tell Us about the Crude Oil Market?," Staff Working Papers 14-42, Bank of Canada.
    13. Lee, Yoon-Jin & Okui, Ryo & Shintani, Mototsugu, 2018. "Asymptotic inference for dynamic panel estimators of infinite order autoregressive processes," Journal of Econometrics, Elsevier, vol. 204(2), pages 147-158.
    14. Giuseppe Cavaliere & David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2009. "Testing for unit roots in the presence of a possible break in trend and non-stationary volatility," Discussion Papers 09/05, University of Nottingham, Granger Centre for Time Series Econometrics.
    15. Daniel Dzikowski & Carsten Jentsch, 2024. "Structural Periodic Vector Autoregressions," Papers 2401.14545, arXiv.org.
    16. Donald W.K. Andrews & Patrik Guggenberger, 2008. "Asymptotics for LS, GLS, and Feasible GLS Statistics in an AR(1) Model with Conditional Heteroskedaticity," Cowles Foundation Discussion Papers 1665, Cowles Foundation for Research in Economics, Yale University.
    17. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Cointegration Rank Testing Under Conditional Heteroskedasticity," Econometric Theory, Cambridge University Press, vol. 26(6), pages 1719-1760, December.
    18. Marcellino, Massimiliano & Jordà , Òscar, 2008. "Path Forecast Evaluation," CEPR Discussion Papers 7009, C.E.P.R. Discussion Papers.
    19. Kilian, Lutz & Kim, Yun Jung, 2009. "Do Local Projections Solve the Bias Problem in Impulse Response Inference?," CEPR Discussion Papers 7266, C.E.P.R. Discussion Papers.
    20. Marian Vavra, 2015. "On a Bootstrap Test for Forecast Evaluations," Working and Discussion Papers WP 5/2015, Research Department, National Bank of Slovakia.
    21. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    22. Smeekes, S. & Urbain, J.R.Y.J., 2014. "A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing," Research Memorandum 008, Maastricht University, Graduate School of Business and Economics (GSBE).
    23. Quentin Giai Gianetto & Hamdi Raïssi, 2015. "Testing Instantaneous Causality in Presence of Nonconstant Unconditional Covariance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 46-53, January.
    24. Atsushi Inoue & `Oscar Jord`a & Guido M. Kuersteiner, 2023. "Inference for Local Projections," Papers 2306.03073, arXiv.org, revised Aug 2024.
    25. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.
    26. Oscar Jorda & Alan Taylor & Sanjay Singh, 2019. "The Long-Run Effects of Monetary Policy," 2019 Meeting Papers 1307, Society for Economic Dynamics.
    27. Nikolay Gospodinov & Ye Tao, 2011. "Bootstrap Unit Root Tests in Models with GARCH(1,1) Errors," Econometric Reviews, Taylor & Francis Journals, vol. 30(4), pages 379-405, August.
    28. José Luis Montiel Olea & Mikkel Plagborg‐Møller, 2021. "Local Projection Inference Is Simpler and More Robust Than You Think," Econometrica, Econometric Society, vol. 89(4), pages 1789-1823, July.
    29. Zhang, Erhua & Wu, Jilin, 2020. "Adaptive estimation of AR∞ models with time-varying variances," Economics Letters, Elsevier, vol. 197(C).
    30. Bob Nobay & Ivan Paya & David A. Peel, 2010. "Inflation Dynamics in the U.S.: Global but Not Local Mean Reversion," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 42(1), pages 135-150, February.
    31. Wanbo Lu & Rui Ke, 2019. "A generalized least squares estimation method for the autoregressive conditional duration model," Statistical Papers, Springer, vol. 60(1), pages 123-146, February.
    32. Niklas Ahlgren & Paul Catani, 2017. "Wild bootstrap tests for autocorrelation in vector autoregressive models," Statistical Papers, Springer, vol. 58(4), pages 1189-1216, December.
    33. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    34. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    35. Richard T. Baillie & George Kapetanios & Fotis Papailias, 2017. "Inference for impulse response coefficients from multivariate fractionally integrated processes," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 60-84, March.
    36. Giuseppe Cavaliere & Morten Ørregaard Nielsen & A.M. Robert Taylor, 2014. "Bootstrap Score Tests for Fractional Integration in Heteroskedastic ARFIMA Models, with an Application to Price Dynamics in Commodity Spot and Futures Markets," CREATES Research Papers 2014-22, Department of Economics and Business Economics, Aarhus University.
    37. Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Springer, vol. 67(3), pages 361-378, September.
    38. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    39. Zacharias Psaradakis & Marián Vávra, 2015. "A Distance Test of Normality for a Wide Class of Stationary Processes," Birkbeck Working Papers in Economics and Finance 1513, Birkbeck, Department of Economics, Mathematics & Statistics.
    40. Jean-Jacques Forneron & Zhongjun Qu, 2024. "Fitting Dynamically Misspecified Models: An Optimal Transportation Approach," Papers 2412.20204, arXiv.org, revised Jul 2025.
    41. Giuseppe Cavaliere & A. M. Robert Taylor, 2009. "Bootstrap M Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 393-421.
    42. Demetrescu Matei, 2009. "Panel Unit Root Testing with Nonlinear Instruments for Infinite-Order Autoregressive Processes," Journal of Time Series Econometrics, De Gruyter, vol. 1(2), pages 1-30, December.
    43. Hsiu-Hsin Ko, 2016. "Exchange Rate Predictability in Finite Samples," The Japanese Economic Review, Japanese Economic Association, vol. 67(3), pages 361-378, September.
    44. Shimizu Kenichi, 2013. "The bootstrap does not alwayswork for heteroscedasticmodels," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 189-204, August.
    45. Guodong Li & Chenlei Leng & Chih-Ling Tsai, 2014. "A Hybrid Bootstrap Approach To Unit Root Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(4), pages 299-321, July.
    46. Giuseppe Cavaliere & Anders Rahbek & A. M. Robert Taylor, 2009. "Co-integration rank tests under conditional heteroskedasticity," Discussion Papers 09/02, University of Nottingham, Granger Centre for Time Series Econometrics.

  19. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    See citations under working paper version above.
  20. Goncalves, Silvia & White, Halbert, 2005. "Bootstrap Standard Error Estimates for Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 970-979, September.

    Cited by:

    1. Augustus J. Panton, 2020. "Climate Hysteresis and Monetary Policy," CAMA Working Papers 2020-76, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Wang, Wenzhao & Su, Chen & Duxbury, Darren, 2021. "Investor sentiment and stock returns: Global evidence," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 365-391.
    3. Perez-Laborda, Alejandro & Perez-Sebastian, Fidel, 2020. "Capital-skill complementarity and biased technical change across US sectors," Journal of Macroeconomics, Elsevier, vol. 66(C).
    4. Gonçalves, Sílvia & Kaffo, Maximilien, 2015. "Bootstrap inference for linear dynamic panel data models with individual fixed effects," Journal of Econometrics, Elsevier, vol. 186(2), pages 407-426.
    5. Mototsugu Shintani & Zi-yi Guo, 2015. "Improving the Finite Sample Performance of Autoregression Estimators in Dynamic Factor Models: A Bootstrap Approach," Vanderbilt University Department of Economics Working Papers 15-00013, Vanderbilt University Department of Economics.
    6. Møller, Stig V., 2014. "GDP growth and the yield curvature," Finance Research Letters, Elsevier, vol. 11(1), pages 1-7.
    7. Johan Blomquist & Joakim Westerlund, 2016. "Panel bootstrap tests of slope homogeneity," Empirical Economics, Springer, vol. 50(4), pages 1359-1381, June.
    8. Mohammad Mojtahedi & Sidney Newton & Jason Meding, 2017. "Predicting the resilience of transport infrastructure to a natural disaster using Cox’s proportional hazards regression model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 1119-1133, January.
    9. Xiaohong Chen & Jinyong Hahn, 2012. "Asymptotic efficiency of semiparametric two-step GMM," CeMMAP working papers CWP31/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Tambunlertchai, Kanittha & Pongkijvorasin, Sittidaj, 2021. "Regulatory stringency and behavior in a common pool resource game: Lab and field experiments," Journal of Asian Economics, Elsevier, vol. 74(C).
    11. Cattaneo, Matias D & Jansson, Michael & Newey, Whitney K, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Department of Economics, Working Paper Series qt6rp7p9gs, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    12. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    13. Baetje, Fabian & Menkhoff, Lukas, 2013. "Macro determinants of U.S. stock market risk premia in bull and bear markets," Hannover Economic Papers (HEP) dp-520, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Sandoval, Luis A. & Carpio, Carlos E. & Sanchez, Marcos & Borja, Ivan & Cabrera, Tania, 2017. "The effect of 'traffic-light' nutritional labelling on carbonated soft drink purchases in Ecuador," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259181, Agricultural and Applied Economics Association.
    15. Andreas Hagemann, 2017. "Cluster-Robust Bootstrap Inference in Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 446-456, January.
    16. Della Corte, P. & Sarno, L. & Sestieri, G., 2011. "The Predictive Information Content of External Imbalances for Exchange Rate Returns: How Much Is It Worth?," Working papers 313, Banque de France.
    17. Noble, Stephanie M. & Lee, Kang Bok & Zaretzki, Russell & Autry, Chad, 2017. "Coupon clipping by impoverished consumers: Linking demographics, basket size, and coupon redemption rates," International Journal of Research in Marketing, Elsevier, vol. 34(2), pages 553-571.
    18. Mosahid Khan & Kul B. Luintel & Konstantinos Theodoris, 2010. "How Robust is the R&D – Productivity relationship? Evidence from OECD Countries," WIPO Economic Research Working Papers 01, World Intellectual Property Organization - Economics and Statistics Division, revised Dec 2010.
    19. Qingwei Wang, 2010. "Sentiment, Convergence of Opinion, and Market Crash," Working Papers 10012, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
    20. James G. MacKinnon, 2006. "Bootstrap Methods In Econometrics," Working Paper 1028, Economics Department, Queen's University.
    21. Buse, Rebekka & Schienle, Melanie & Urban, Jörg, 2022. "Assessing the impact of policy and regulation interventions in European sovereign credit risk networks: What worked best?," Journal of International Economics, Elsevier, vol. 139(C).
    22. Fausto Vieira & Fernando Chague & Marcelo Fernandes, 2016. "Forecasting the Brazilian Yield Curve Using Forward-Looking Variables," Working Papers 799, Queen Mary University of London, School of Economics and Finance.
    23. Grilli, Luca & Murtinu, Samuele, 2018. "Selective subsidies, entrepreneurial founders' human capital, and access to R&D alliances," Research Policy, Elsevier, vol. 47(10), pages 1945-1963.
    24. Kobelsky, Kevin W. & Robinson, Michael A., 2010. "The impact of outsourcing on information technology spending," International Journal of Accounting Information Systems, Elsevier, vol. 11(2), pages 105-119.
    25. Ranjani Atukorala & Maxwell L. King & Sivagowry Sriananthakumar, 2014. "Applications of Information Measures to Assess Convergence in the Central Limit Theorem," Monash Econometrics and Business Statistics Working Papers 29/14, Monash University, Department of Econometrics and Business Statistics.
    26. Kristian Skrede Gleditsch & Sara M. T. Polo, 2016. "Ethnic inclusion, democracy, and terrorism," Public Choice, Springer, vol. 169(3), pages 207-229, December.
    27. Arulampalam, Wiji & Corradi, Valentina & Gutknecht, Daniel, 2017. "Modeling heaped duration data: An application to neonatal mortality," Journal of Econometrics, Elsevier, vol. 200(2), pages 363-377.
    28. Sarno, Lucio & Della Corte, Pasquale & Tsiakas, Ilias, 2010. "Spot and Forward Volatility in Foreign Exchange," CEPR Discussion Papers 7893, C.E.P.R. Discussion Papers.
    29. Rangvid, Jesper & Schmeling, Maik & Schrimpf, Andreas, 2014. "Dividend Predictability Around the World," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 49(5-6), pages 1255-1277, December.
    30. Lindahl, Therese & Bodin, Örjan & Tengö, Maria, 2015. "Governing complex commons — The role of communication for experimental learning and coordinated management," Ecological Economics, Elsevier, vol. 111(C), pages 111-120.
    31. Bianchi, Mattia & Murtinu, Samuele & Scalera, Vittoria G., 2019. "R&D Subsidies as Dual Signals in Technological Collaborations," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    32. Hounyo, Ulrich & Lahiri, Kajal, 2023. "Estimating the variance of a combined forecast: Bootstrap-based approach," Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
    33. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    34. Schmeling, Maik, 2009. "Investor sentiment and stock returns: Some international evidence," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 394-408, June.
    35. Jean-Jacques Forneron, 2022. "Estimation and Inference by Stochastic Optimization," Papers 2205.03254, arXiv.org.
    36. Li, Jing, 2018. "Essays on model uncertainty in financial models," Other publications TiSEM 202cd910-7ef1-4db4-94ae-d, Tilburg University, School of Economics and Management.
    37. Jinyong Hahn & Zhipeng Liao, 2021. "Bootstrap Standard Error Estimates and Inference," Econometrica, Econometric Society, vol. 89(4), pages 1963-1977, July.
    38. Kul Luintel & Mosahid Khan & Konstantinos Theodoridis, 2014. "On the robustness of R&D," Journal of Productivity Analysis, Springer, vol. 42(2), pages 137-155, October.
    39. Kanittha Tambunlertchai & Sittidaj Pongkijvorasin, 2020. "The impacts of collective threshold requirements for rewards in a CPR experiment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 537-554, October.
    40. Corredor, Pilar & Ferrer, Elena & Santamaria, Rafael, 2013. "Investor sentiment effect in stock markets: Stock characteristics or country-specific factors?," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 572-591.
    41. White, Halbert, 2006. "Time-series estimation of the effects of natural experiments," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 527-566.
    42. Ji-Eun Choi & Dong Wan Shin, 2021. "A self-normalization break test for correlation matrix," Statistical Papers, Springer, vol. 62(5), pages 2333-2353, October.
    43. Kato Kengo, 2011. "A note on moment convergence of bootstrap M-estimators," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 51-61, March.
    44. Gimenez-Nadal, José Ignacio & Lafuente, Miguel & Molina, José Alberto & Velilla, Jorge, 2016. "Resampling and Bootstrap to Assess the Relevance of Variables: A New Algorithmic Approach with Applications to Entrepreneurship Data," IZA Discussion Papers 9938, Institute of Labor Economics (IZA).
    45. Fernandes, Marcelo & Vieira, Fausto, 2019. "A dynamic Nelson–Siegel model with forward-looking macroeconomic factors for the yield curve in the US," Journal of Economic Dynamics and Control, Elsevier, vol. 106(C), pages 1-1.

  21. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    See citations under working paper version above.
  22. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    See citations under working paper version above.
  23. Goncalves, Silvia & de Jong, Robert, 2003. "Consistency of the stationary bootstrap under weak moment conditions," Economics Letters, Elsevier, vol. 81(2), pages 273-278, November.

    Cited by:

    1. Prayut Jain & Shashi Jain, 2019. "Can Machine Learning-Based Portfolios Outperform Traditional Risk-Based Portfolios? The Need to Account for Covariance Misspecification," Risks, MDPI, vol. 7(3), pages 1-27, July.
    2. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2023. "Data-driven Approach for Static Hedging of Exchange Traded Options," Papers 2302.00728, arXiv.org, revised Jan 2024.
    3. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
    4. Dominik Wied, 2017. "A nonparametric test for a constant correlation matrix," Econometric Reviews, Taylor & Francis Journals, vol. 36(10), pages 1157-1172, November.
    5. Dehling, Herold & Sharipov, Olimjon Sh. & Wendler, Martin, 2015. "Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 200-215.
    6. Hwang, Eunju & Shin, Dong Wan, 2012. "Strong consistency of the stationary bootstrap under ψ-weak dependence," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 488-495.
    7. Zacharias Psaradakis & Marian Vavra, 2018. "Bootstrap Assisted Tests of Symmetry for Dependent Data," Working and Discussion Papers WP 5/2018, Research Department, National Bank of Slovakia.
    8. A. Amendola & V. Candila, 2016. "Evaluation of volatility predictions in a VaR framework," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 695-709, May.
    9. Li, Jia & Patton, Andrew J., 2018. "Asymptotic inference about predictive accuracy using high frequency data," Journal of Econometrics, Elsevier, vol. 203(2), pages 223-240.
    10. M. Chudý & S. Karmakar & W. B. Wu, 2020. "Long-term prediction intervals of economic time series," Empirical Economics, Springer, vol. 58(1), pages 191-222, January.
    11. Calhoun, Gray, 2014. "Block Bootstrap Consistency Under Weak Assumptions," Staff General Research Papers Archive 34313, Iowa State University, Department of Economics.
    12. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2006. "Bootstrap tests of multiple inequality restrictions on variance ratios," Economics Letters, Elsevier, vol. 91(3), pages 343-348, June.
    13. Hwang, Eunju & Shin, Dong Wan, 2013. "Stationary bootstrapping realized volatility," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2045-2051.

  24. Gonçalves, Sílvia & White, Halbert, 2002. "The Bootstrap Of The Mean For Dependent Heterogeneous Arrays," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1367-1384, December.
    See citations under working paper version above.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.