IDEAS home Printed from
   My bibliography  Save this paper

Modelling Heaped Duration Data: An Application to Neonatal Mortality


  • Arulampalam, Wiji

    () (University of Warwick)

  • Corradi, Valentina

    () (University of Surrey)

  • Gutknecht, Daniel

    () (University of Oxford)


In 2005, the Indian Government launched a conditional cash-incentive program to encourage institutional delivery. This paper studies the effects of the program on neonatal mortality using district-level household survey data. We model mortality using survival analysis, paying special attention to the substantial heaping present in the data. The main objective of this paper is to provide a set of sufficient conditions for identification and consistent estimation of the baseline hazard accounting for heaping and unobserved heterogeneity. Our identification strategy requires neither administrative data nor multiple measurements, but a correctly reported duration and the presence of some flat segments in the baseline hazard which includes this correctly reported duration point. We establish the asymptotic properties of the maximum likelihood estimator and provide a simple procedure to test whether the policy had (uniformly) reduced mortality. While our empirical findings do not confirm the latter, they do indicate that accounting for heaping matters for the estimation of the baseline hazard.

Suggested Citation

  • Arulampalam, Wiji & Corradi, Valentina & Gutknecht, Daniel, 2014. "Modelling Heaped Duration Data: An Application to Neonatal Mortality," IZA Discussion Papers 8493, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp8493

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Validity Of Subsampling And “Plug-In Asymptotic” Inference For Parameters Defined By Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 25(03), pages 669-709, June.
    2. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    3. Powell-Jackson, Timothy & Mazumdar, Sumit & Mills, Anne, 2015. "Financial incentives in health: New evidence from India's Janani Suraksha Yojana," Journal of Health Economics, Elsevier, vol. 43(C), pages 154-169.
    4. Meyer, Bruce D, 1990. "Unemployment Insurance and Unemployment Spells," Econometrica, Econometric Society, vol. 58(4), pages 757-782, July.
    5. Sueyoshi, Glenn T, 1995. "A Class of Binary Response Models for Grouped Duration Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(4), pages 411-431, Oct.-Dec..
    6. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    7. Battistin, Erich & Chesher, Andrew, 2014. "Treatment effect estimation with covariate measurement error," Journal of Econometrics, Elsevier, vol. 178(2), pages 707-715.
    8. J. Heckman & B. Singer, 1984. "The Identifiability of the Proportional Hazard Model," Review of Economic Studies, Oxford University Press, vol. 51(2), pages 231-241.
    9. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    10. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    11. Lewbel, Arthur, 2007. "Endogenous selection or treatment model estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 777-806, December.
    12. Torelli, Nicola & Trivellato, Ugo, 1993. "Modelling inaccuracies in job-search duration data," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 187-211, September.
    13. John C. Ham & Xianghong Li & Lara D. Shore-Sheppard, 2016. "The Employment Dynamics of Disadvantaged Women: Evidence from the SIPP," Journal of Labor Economics, University of Chicago Press, vol. 34(4), pages 899-944.
    14. Martin Burda & Matthew Harding & Jerry Hausman, 2015. "A Bayesian Semiparametric Competing Risk Model with Unobserved Heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(3), pages 353-376, April.
    15. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
    16. Jaap H. Abbring & Gerard J. Van Den Berg, 2007. "The unobserved heterogeneity distribution in duration analysis," Biometrika, Biometrika Trust, vol. 94(1), pages 87-99.
    17. Petoussis, Kos & Gill, Richard & Zeelenberg, Kees, 1997. "Statistical analysis of heaped duration data," MPRA Paper 89263, University Library of Munich, Germany.
    18. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    19. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    20. Corradi, Valentina & Distaso, Walter & Mele, Antonio, 2013. "Macroeconomic determinants of stock volatility and volatility premiums," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 203-220.
    21. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    22. Geert Ridder & Tiemen M. Woutersen, 2003. "The Singularity of the Information Matrix of the Mixed Proportional Hazard Model," Econometrica, Econometric Society, vol. 71(5), pages 1579-1589, September.
    23. repec:adr:anecst:y:1999:i:55-56:p:09 is not listed on IDEAS
    24. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    25. Bierens, Herman J., 2008. "Semi-Nonparametric Interval-Censored Mixed Proportional Hazard Models: Identification And Consistency Results," Econometric Theory, Cambridge University Press, vol. 24(03), pages 749-794, June.
    26. John C. Ham & Xianghong Li & Lara Shore-Sheppard, 2009. "Seam Bias, Multiple-State, Multiple-Spell Duration Models and the Employment Dynamics of Disadvantaged Women," NBER Working Papers 15151, National Bureau of Economic Research, Inc.
    27. Thomas Augustin & Joachim Wolff, 2004. "A bias analysis of Weibull models under heaped data," Statistical Papers, Springer, vol. 45(2), pages 211-229, April.
    28. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    29. Jason Abrevaya & Jerry A. Hausman, 1999. "Semiparametric Estimation with Mismeasured Dependent Variables: An Application to Duration Models for Unemployment Spells," Annals of Economics and Statistics, GENES, issue 55-56, pages 243-275.
    30. Goncalves, Silvia & White, Halbert, 2005. "Bootstrap Standard Error Estimates for Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 970-979, September.
    31. Chris Elbers & Geert Ridder, 1982. "True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model," Review of Economic Studies, Oxford University Press, vol. 49(3), pages 403-409.
    32. repec:adr:anecst:y:1999:i:55-56 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:kea:keappr:ker-20190101-35-1-08 is not listed on IDEAS

    More about this item


    discrete time duration model; heaping; measurement error; neonatal mortality; parameters on the boundary;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp8493. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Holger Hinte). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.