IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v178y2014ip1p114-131.html
   My bibliography  Save this article

Estimating a semi-parametric duration model without specifying heterogeneity

Author

Listed:
  • Hausman, Jerry A.
  • Woutersen, Tiemen

Abstract

This paper presents a new estimator for the mixed proportional hazard model that allows for a nonparametric baseline hazard and time-varying regressors. In particular, this paper allows for discrete measurement of the durations as happens often in practice. The integrated baseline hazard and all parameters are estimated at the regular rate, N, where N is the number of individuals. A hazard model is a natural framework for time-varying regressors. In particular, if a flow or a transition probability depends on a regressor that changes with time, a hazard model avoids the curse of dimensionality that would arise from interacting the regressors at each point in time with one another. This paper also presents a new test to detect unobserved heterogeneity.

Suggested Citation

  • Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
  • Handle: RePEc:eee:econom:v:178:y:2014:i:p1:p:114-131 DOI: 10.1016/j.jeconom.2013.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407613001619
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    2. Meyer, Bruce D, 1990. "Unemployment Insurance and Unemployment Spells," Econometrica, Econometric Society, vol. 58(4), pages 757-782, July.
    3. Jinyong Hahn, 1994. "The Efficiency Bound of the Mixed Proportional Hazard Model," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 607-629.
    4. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, pages 155-191.
    5. Horowitz, Joel L. & Lee, Sokbae, 2004. "Semiparametric estimation of a panel data proportional hazards model with fixed effects," Journal of Econometrics, Elsevier, vol. 119(1), pages 155-198, March.
    6. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    7. Songnian Chen, 2002. "Rank Estimation of Transformation Models," Econometrica, Econometric Society, vol. 70(4), pages 1683-1697, July.
    8. Frederiksen, Anders & Honore, Bo E. & Hu, Luojia, 2007. "Discrete time duration models with group-level heterogeneity," Journal of Econometrics, Elsevier, vol. 141(2), pages 1014-1043, December.
    9. Geert Ridder, 1990. "The Non-Parametric Identification of Generalized Accelerated Failure-Time Models," Review of Economic Studies, Oxford University Press, vol. 57(2), pages 167-181.
    10. Joel L. Horowitz, 1999. "Semiparametric Estimation of a Proportional Hazard Model with Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 67(5), pages 1001-1028, September.
    11. Ham, John C & Rea, Samuel A, Jr, 1987. "Unemployment Insurance and Male Unemployment Duration in Canada," Journal of Labor Economics, University of Chicago Press, vol. 5(3), pages 325-353, July.
    12. Geert Ridder & Tiemen M. Woutersen, 2003. "The Singularity of the Information Matrix of the Mixed Proportional Hazard Model," Econometrica, Econometric Society, vol. 71(5), pages 1579-1589, September.
    13. Abrevaya, Jason, 1999. "Computation of the maximum rank correlation estimator," Economics Letters, Elsevier, vol. 62(3), pages 279-285, March.
    14. Bo E. HonorÈ & Luojia Hu, 2010. "Estimation of a transformation model with truncation, interval observation and time-varying covariates," Econometrics Journal, Royal Economic Society, vol. 13(1), pages 127-144, February.
    15. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    16. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460 Elsevier.
    17. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
    18. Honore, Bo E, 1990. "Simple Estimation of a Duration Model with Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 58(2), pages 453-473, March.
    19. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228 Elsevier.
    20. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    21. Lancaster, Tony, 1979. "Econometric Methods for the Duration of Unemployment," Econometrica, Econometric Society, vol. 47(4), pages 939-956, July.
    22. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
    23. Brinch, Christian N., 2007. "Nonparametric Identification Of The Mixed Hazards Model With Time-Varying Covariates," Econometric Theory, Cambridge University Press, vol. 23(02), pages 349-354, April.
    24. Tiemen Woutersen, 2002. "Robustness against Incidental Parameters," UWO Department of Economics Working Papers 20028, University of Western Ontario, Department of Economics.
    25. Sherman, Robert P, 1993. "The Limiting Distribution of the Maximum Rank Correlation Estimator," Econometrica, Econometric Society, vol. 61(1), pages 123-137, January.
    26. Tiemen Woutersen, 2000. "Estimators for Panel Duration Data with Endogenous Censoring and Endogenous Regressors," Econometric Society World Congress 2000 Contributed Papers 1581, Econometric Society.
    27. Heckman, James J, 1991. "Identifying the Hand of the Past: Distinguishing State Dependence from Heterogeneity," American Economic Review, American Economic Association, vol. 81(2), pages 75-79, May.
    28. Chris Elbers & Geert Ridder, 1982. "True and Spurious Duration Dependence: The Identifiability of the Proportional Hazard Model," Review of Economic Studies, Oxford University Press, vol. 49(3), pages 403-409.
    29. Horowitz, Joel L, 1996. "Semiparametric Estimation of a Regression Model with an Unknown Transformation of the Dependent Variable," Econometrica, Econometric Society, vol. 64(1), pages 103-137, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burda, Martin & Harding, Matthew, 2014. "Environmental Justice: Evidence from Superfund cleanup durations," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 380-401.
    2. Wolter, James Lewis, 2016. "Kernel estimation of hazard functions when observations have dependent and common covariates," Journal of Econometrics, Elsevier, vol. 193(1), pages 1-16.
    3. repec:eee:econom:v:200:y:2017:i:2:p:363-377 is not listed on IDEAS

    More about this item

    Keywords

    Mixed proportional hazard model; Time-varying regressors; Heterogeneity;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:178:y:2014:i:p1:p:114-131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.