IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/16793.html

Higher Order Properties of the Wild Bootstrap Under Misspecification

Author

Listed:
  • Patrick M. Kline
  • Andres Santos

Abstract

We examine the higher order properties of the wild bootstrap (Wu, 1986) in a linear regression model with stochastic regressors. We find that the ability of the wild bootstrap to provide a higher order refinement is contingent upon whether the errors are mean independent of the regressors or merely uncorrelated. In the latter case, the wild bootstrap may fail to match some of the terms in an Edgeworth expansion of the full sample test statistic, potentially leading to only a partial refinement (Liu and Singh, 1987). To assess the practical implications of this result, we conduct a Monte Carlo study contrasting the performance of the wild bootstrap with the traditional nonparametric bootstrap.

Suggested Citation

  • Patrick M. Kline & Andres Santos, 2011. "Higher Order Properties of the Wild Bootstrap Under Misspecification," NBER Working Papers 16793, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:16793
    Note: TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w16793.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:hum:wpaper:sfb649dp2014-067 is not listed on IDEAS
    2. Richard, Patrick, 2017. "Robust heteroskedasticity-robust tests," Economics Letters, Elsevier, vol. 159(C), pages 28-32.
    3. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "Coverage Error Optimal Confidence Intervals for Local Polynomial Regression," Papers 1808.01398, arXiv.org, revised Jul 2021.
    4. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
    5. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    6. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    7. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    8. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    9. Lavergne, Pascal & Bertail, Patrice, 2020. "Bootstrapping Quasi Likelihood Ratio Tests under Misspecification," TSE Working Papers 20-1102, Toulouse School of Economics (TSE).
    10. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    11. Hershbein Brad J., 2012. "Graduating High School in a Recession: Work, Education, and Home Production," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 12(1), pages 1-32, January.
    12. Spokoiny, Vladimir & Zhilova, Mayya, 2014. "Bootstrap confidence sets under model misspecification," SFB 649 Discussion Papers 2014-067, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Taisuke Otsu & Yoshiyasu Rai, 2017. "Bootstrap Inference of Matching Estimators for Average Treatment Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1720-1732, October.
    14. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:16793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.