IDEAS home Printed from
   My bibliography  Save this paper

On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference


  • Sebastian Calonico
  • Matias D. Cattaneo
  • Max H. Farrell


Nonparametric methods play a central role in modern empirical work. While they provide inference procedures that are more robust to parametric misspecification bias, they may be quite sensitive to tuning parameter choices. We study the effects of bias correction on confidence interval coverage in the context of kernel density and local polynomial regression estimation, and prove that bias correction can be preferred to undersmoothing for minimizing coverage error and increasing robustness to tuning parameter choice. This is achieved using a novel, yet simple, Studentization, which leads to a new way of constructing kernel-based bias-corrected confidence intervals. In addition, for practical cases, we derive coverage error optimal bandwidths and discuss easy-to-implement bandwidth selectors. For interior points, we show that the MSE-optimal bandwidth for the original point estimator (before bias correction) delivers the fastest coverage error decay rate after bias correction when second-order (equivalent) kernels are employed, but is otherwise suboptimal because it is too "large". Finally, for odd-degree local polynomial regression, we show that, as with point estimation, coverage error adapts to boundary points automatically when appropriate Studentization is used; however, the MSE-optimal bandwidth for the original point estimator is suboptimal. All the results are established using valid Edgeworth expansions and illustrated with simulated data. Our findings have important consequences for empirical work as they indicate that bias-corrected confidence intervals, coupled with appropriate standard errors, have smaller coverage error and are less sensitive to tuning parameter choices in practically relevant cases where additional smoothness is available.

Suggested Citation

  • Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2015. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Papers 1508.02973,, revised Mar 2018.
  • Handle: RePEc:arx:papers:1508.02973

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Donald W. K. Andrews, 2002. "Higher-Order Improvements of a Computationally Attractive "k"-Step Bootstrap for Extremum Estimators," Econometrica, Econometric Society, vol. 70(1), pages 119-162, January.
    2. Kline, Patrick & Santos, Andres, 2012. "Higher order properties of the wild bootstrap under misspecification," Journal of Econometrics, Elsevier, vol. 171(1), pages 54-70.
    3. Berry S. M. & Carroll R. J & Ruppert D., 2002. "Bayesian Smoothing and Regression Splines for Measurement Error Problems," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 160-169, March.
    4. Alberto Abadie & Guido W. Imbens, 2008. "Estimation of the Conditional Variance in Paired Experiments," Annals of Economics and Statistics, GENES, issue 91-92, pages 175-187.
    5. Susanne M Schennach, 2020. "A Bias Bound Approach to Non-parametric Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(5), pages 2439-2472.
    6. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    8. Matias D. Cattaneo & Richard K. Crump & Michael Jansson, 2013. "Generalized Jackknife Estimators of Weighted Average Derivatives," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1243-1256, December.
    9. Xiaohong Chen & Norman R. Swanson (ed.), 2013. "Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis," Springer Books, Springer, edition 127, number 978-1-4614-1653-1, September.
    10. repec:adr:anecst:y:2008:i:91-92:p:09 is not listed on IDEAS
    11. Song Xi Chen & Yong Song Qin, 2002. "Confidence Intervals Based on Local Linear Smoother," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(1), pages 89-99, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "Coverage Error Optimal Confidence Intervals for Local Polynomial Regression," Papers 1808.01398,, revised Jul 2021.
    2. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162,, revised Feb 2020.
    3. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    4. Gery Geenens & Thomas Cuddihy, 2018. "Non‐parametric evidence of second‐leg home advantage in European football," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1009-1031, October.
    5. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    6. Lee, Seojeong, 2014. "Asymptotic refinements of a misspecification-robust bootstrap for generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 178(P3), pages 398-413.
    7. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    8. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    9. Lavergne, Pascal & Bertail, Patrice, 2020. "Bootstrapping Quasi Likelihood Ratio Tests under Misspecification," TSE Working Papers 20-1102, Toulouse School of Economics (TSE).
    10. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    11. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    12. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    13. Kline Patrick & Santos Andres, 2012. "A Score Based Approach to Wild Bootstrap Inference," Journal of Econometric Methods, De Gruyter, vol. 1(1), pages 23-41, August.
    14. Byunghoon Kang, 2017. "Inference in Nonparametric Series Estimation with Data-Dependent Undersmoothing," Working Papers 170712442, Lancaster University Management School, Economics Department.
    15. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    16. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    17. Charlier, Isabelle & Paindaveine, Davy & Saracco, Jérôme, 2015. "Conditional quantile estimation based on optimal quantization: From theory to practice," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 20-39.
    18. Mayya Zhilova, 2015. "Simultaneous likelihood-based bootstrap confidence sets for a large number of models," SFB 649 Discussion Papers SFB649DP2015-031, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    19. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    20. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1508.02973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.