IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1508.02973.html
   My bibliography  Save this paper

On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference

Author

Listed:
  • Sebastian Calonico
  • Matias D. Cattaneo
  • Max H. Farrell

Abstract

Nonparametric methods play a central role in modern empirical work. While they provide inference procedures that are more robust to parametric misspecification bias, they may be quite sensitive to tuning parameter choices. We study the effects of bias correction on confidence interval coverage in the context of kernel density and local polynomial regression estimation, and prove that bias correction can be preferred to undersmoothing for minimizing coverage error and increasing robustness to tuning parameter choice. This is achieved using a novel, yet simple, Studentization, which leads to a new way of constructing kernel-based bias-corrected confidence intervals. In addition, for practical cases, we derive coverage error optimal bandwidths and discuss easy-to-implement bandwidth selectors. For interior points, we show that the MSE-optimal bandwidth for the original point estimator (before bias correction) delivers the fastest coverage error decay rate after bias correction when second-order (equivalent) kernels are employed, but is otherwise suboptimal because it is too "large". Finally, for odd-degree local polynomial regression, we show that, as with point estimation, coverage error adapts to boundary points automatically when appropriate Studentization is used; however, the MSE-optimal bandwidth for the original point estimator is suboptimal. All the results are established using valid Edgeworth expansions and illustrated with simulated data. Our findings have important consequences for empirical work as they indicate that bias-corrected confidence intervals, coupled with appropriate standard errors, have smaller coverage error and are less sensitive to tuning parameter choices in practically relevant cases where additional smoothness is available.

Suggested Citation

  • Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2015. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Papers 1508.02973, arXiv.org, revised Mar 2018.
  • Handle: RePEc:arx:papers:1508.02973
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1508.02973
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Susanne M Schennach, 2020. "A Bias Bound Approach to Non-parametric Inference," Review of Economic Studies, Oxford University Press, vol. 87(5), pages 2439-2472.
    2. Matias D. Cattaneo & Richard K. Crump & Michael Jansson, 2013. "Generalized Jackknife Estimators of Weighted Average Derivatives," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1243-1256, December.
    3. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    2. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    3. Jean-Pierre FLORENS & Joel L. HOROWITZ & Ingrid VAN KEILEGOM, 2017. "Bias-Corrected Confidence Intervals in a Class of Linear Inverse Problems," Annals of Economics and Statistics, GENES, issue 128, pages 203-228.
    4. Mayya Zhilova, 2015. "Simultaneous likelihood-based bootstrap confidence sets for a large number of models," SFB 649 Discussion Papers SFB649DP2015-031, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Ang, Andrew & Kristensen, Dennis, 2012. "Testing conditional factor models," Journal of Financial Economics, Elsevier, vol. 106(1), pages 132-156.
    6. Yukitoshi Matsushita & Taisuke Otsu, 2018. "Likelihood Inference on Semiparametric Models: Average Derivative and Treatment Effect," The Japanese Economic Review, Japanese Economic Association, vol. 69(2), pages 133-155, June.
    7. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    8. Čížek, Pavel & Lei, Jinghua, 2018. "Identification and estimation of nonseparable single-index models in panel data with correlated random effects," Journal of Econometrics, Elsevier, vol. 203(1), pages 113-128.
    9. Horowitz, Joel L. & Lee, Sokbae, 2017. "Nonparametric estimation and inference under shape restrictions," Journal of Econometrics, Elsevier, vol. 201(1), pages 108-126.
    10. Joel L. Horowitz, 2018. "Bootstrap Methods in Econometrics," Papers 1809.04016, arXiv.org.
    11. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    12. Jia Li & Dacheng Xiu, 2016. "Generalized Method of Integrated Moments for High‐Frequency Data," Econometrica, Econometric Society, vol. 84, pages 1613-1633, July.
    13. Sokbae Lee & Ryo Okui & Yoon†Jae Whang, 2017. "Doubly robust uniform confidence band for the conditional average treatment effect function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1207-1225, November.
    14. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Review of Economic Studies, Oxford University Press, vol. 86(3), pages 1095-1122.
    15. Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020. "Autoregressive wild bootstrap inference for nonparametric trends," Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
    16. Harold D. Chiang & Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Linear programming approach to nonparametric inference under shape restrictions: with an application to regression kink designs," Papers 2102.06586, arXiv.org.
    17. Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.
    18. Gery Geenens & Thomas Cuddihy, 2018. "Non‐parametric evidence of second‐leg home advantage in European football," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1009-1031, October.
    19. Susanne M Schennach, 2020. "A Bias Bound Approach to Non-parametric Inference," Review of Economic Studies, Oxford University Press, vol. 87(5), pages 2439-2472.
    20. Rothe, Christoph & Firpo, Sergio Pinheiro, 2013. "Semiparametric estimation and inference using doubly robust moment conditions," Textos para discussão 330, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1508.02973. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.