IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v87y2020i5p2439-2472..html

A Bias Bound Approach to Non-parametric Inference

Author

Listed:
  • Susanne M Schennach

Abstract

The traditional approach to obtain valid confidence intervals for non-parametric quantities is to select a smoothing parameter such that the bias of the estimator is negligible relative to its standard deviation. While this approach is apparently simple, it has two drawbacks: first, the question of optimal bandwidth selection is no longer well-defined, as it is not clear what ratio of bias to standard deviation should be considered negligible. Second, since the bandwidth choice necessarily deviates from the optimal (mean squares-minimizing) bandwidth, such a confidence interval is very inefficient. To address these issues, we construct valid confidence intervals that account for the presence of a non-negligible bias and thus make it possible to perform inference with optimal mean squared error minimizing bandwidths. The key difficulty in achieving this involves finding a strict, yet feasible, bound on the bias of a non-parametric estimator. It is well-known that it is not possible to consistently estimate the pointwise bias of an optimal non-parametric estimator (for otherwise, one could subtract it and obtain a faster convergence rate violating Stone’s bounds on the optimal convergence rates). Nevertheless, we find that, under minimal primitive assumptions, it is possible to consistently estimate an upper bound on the magnitude of the bias, which is sufficient to deliver a valid confidence interval whose length decreases at the optimal rate and which does not contradict Stone’s results.

Suggested Citation

  • Susanne M Schennach, 2020. "A Bias Bound Approach to Non-parametric Inference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(5), pages 2439-2472.
  • Handle: RePEc:oup:restud:v:87:y:2020:i:5:p:2439-2472.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdz065
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or

    for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Byunghoon Kang, 2017. "Inference in Nonparametric Series Estimation with Data-Dependent Undersmoothing," Working Papers 170712442, Lancaster University Management School, Economics Department.
    2. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    3. Byunghoon Kang, 2018. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Working Papers 240829404, Lancaster University Management School, Economics Department.
    4. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "Coverage Error Optimal Confidence Intervals for Local Polynomial Regression," Papers 1808.01398, arXiv.org, revised Jul 2021.
    5. Timothy B. Armstrong, 2018. "Adaptation Bounds for Confidence Bands under Self-Similarity," Cowles Foundation Discussion Papers 2146R, Cowles Foundation for Research in Economics, Yale University, revised Jul 2019.
    6. Timothy B. Armstrong & Michal Kolesár, 2018. "Optimal Inference in a Class of Regression Models," Econometrica, Econometric Society, vol. 86(2), pages 655-683, March.
    7. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    8. Byunghoon Kang, 2019. "Inference in Nonparametric Series Estimation with Specification Searches for the Number of Series Terms," Papers 1909.12162, arXiv.org, revised Feb 2020.
    9. Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Robust inference in deconvolution," Quantitative Economics, Econometric Society, vol. 12(1), pages 109-142, January.
    10. Timothy B Armstrong & Michal Kolesár, 2018. "A Simple Adjustment for Bandwidth Snooping," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(2), pages 732-765.
    11. Yuya Sasaki & Takuya Ura, 2021. "Slow Movers in Panel Data," Papers 2110.12041, arXiv.org.
    12. Harold D. Chiang & Kengo Kato & Yuya Sasaki & Takuya Ura, 2021. "Linear programming approach to nonparametric inference under shape restrictions: with an application to regression kink designs," Papers 2102.06586, arXiv.org.
    13. Sasaki, Yuya & Wang, Yulong, 2024. "On uniform confidence intervals for the tail index and the extreme quantile," Journal of Econometrics, Elsevier, vol. 244(1).
    14. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:87:y:2020:i:5:p:2439-2472.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.