IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.01398.html
   My bibliography  Save this paper

Coverage Error Optimal Confidence Intervals for Local Polynomial Regression

Author

Listed:
  • Sebastian Calonico
  • Matias D. Cattaneo
  • Max H. Farrell

Abstract

We characterize the minimax bound on coverage error of Wald-type confidence intervals for nonparametric local polynomial regression. This bound depends on the smoothness of the population regression function, the smoothness exploited by the inference procedure, and on whether the evaluation point of interest is in the interior or on the boundary of the support of the regression function. Our results also cover inference on derivatives of the regression function, in which case we find that the minimax coverage error bound does not depend on the order of the derivative being estimated. We show that robust bias corrected confidence intervals are able to attain the minimax rate when coupled with the principled, inference-optimal tuning parameter selections we propose. In addition, we show how the large-sample interval length can be further optimized through choice of the kernel function and other tuning parameters. Our main theoretical results rely on novel Edgeworth expansions that are proven to hold uniformly over relevant classes of data generating processes. These higher-order expansions allow for the uniform kernel and any derivative order, improving on previous technical results available in the literature.

Suggested Citation

  • Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "Coverage Error Optimal Confidence Intervals for Local Polynomial Regression," Papers 1808.01398, arXiv.org, revised May 2020.
  • Handle: RePEc:arx:papers:1808.01398
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.01398
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graham Elliott & Ulrich K. Müller & Mark W. Watson, 2015. "Nearly Optimal Tests When a Nuisance Parameter Is Present Under the Null Hypothesis," Econometrica, Econometric Society, vol. 83, pages 771-811, March.
    2. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Review of Economic Studies, Oxford University Press, vol. 86(3), pages 1095-1122.
    3. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    4. Kline, Patrick & Santos, Andres, 2012. "Higher order properties of the wild bootstrap under misspecification," Journal of Econometrics, Elsevier, vol. 171(1), pages 54-70.
    5. Paulo M.D.C. Parente & Richard J. Smith, 2014. "Recent Developments in Empirical Likelihood and Related Methods," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 77-102, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yang & Bartalotti, Otávio, 2019. "Wild Bootstrap for Fuzzy Regression Discontinuity Designs: Obtaining Robust Bias-Corrected Confidence Intervals," IZA Discussion Papers 12801, Institute of Labor Economics (IZA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreira, Humberto Ataíde & Moreira, Marcelo J., 2015. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 764, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    2. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    3. Tuvaandorj, Purevdorj, 2020. "Regression discontinuity designs, white noise models, and minimax," Journal of Econometrics, Elsevier, vol. 218(2), pages 587-608.
    4. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.
    5. Tetsuya Kaji, 2019. "Theory of Weak Identification in Semiparametric Models," Papers 1908.10478, arXiv.org, revised Aug 2020.
    6. Moreira, Humberto & Moreira, Marcelo J., 2019. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," Journal of Econometrics, Elsevier, vol. 213(2), pages 398-433.
    7. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    8. Dufour, J.M., 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    9. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    10. Vladimir Spokoiny & Mayya Zhilova, 2014. "Bootstrap confidence sets under model misspecification," SFB 649 Discussion Papers SFB649DP2014-067, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    11. Jun Ma & Charles R. Nelson, 2008. "Valid Inference for a Class of Models Where Standard Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and Unobserved Components," Working Papers UWEC-2008-06-R, University of Washington, Department of Economics, revised Sep 2008.
    12. Chaudhuri, Saraswata & Zivot, Eric, 2011. "A new method of projection-based inference in GMM with weakly identified nuisance parameters," Journal of Econometrics, Elsevier, vol. 164(2), pages 239-251, October.
    13. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    14. Bhagat, Sanjai & Bolton, Brian, 2019. "Corporate governance and firm performance: The sequel," Journal of Corporate Finance, Elsevier, vol. 58(C), pages 142-168.
    15. Dufour, Jean-Marie & Torres, Olivier, 2000. "Markovian processes, two-sided autoregressions and finite-sample inference for stationary and nonstationary autoregressive processes," Journal of Econometrics, Elsevier, vol. 99(2), pages 255-289, December.
    16. Anand Acharya & Lynda Khalaf & Marcel Voia & Myra Yazbeck & David Wensley, 2021. "Severity of Illness and the Duration of Intensive Care," Working Papers 2021-003, Human Capital and Economic Opportunity Working Group.
    17. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," Cowles Foundation Discussion Papers 1530, Cowles Foundation for Research in Economics, Yale University.
    18. Chevillon, Guillaume & Mavroeidis, Sophocles & Zhan, Zhaoguo, 2016. "Robust inference in structural VARs with long-run restrictions," ESSEC Working Papers WP1702, ESSEC Research Center, ESSEC Business School.
    19. Davidson James & Rambaccussing Dooruj, 2015. "A Test of the Long Memory Hypothesis Based on Self-Similarity," Journal of Time Series Econometrics, De Gruyter, vol. 7(2), pages 115-141, July.
    20. Jean-Thomas Bernard & Lynda Khalaf & Maral Kichian, 2004. "Structural Change and Forecasting Long-Run Energy Prices," Staff Working Papers 04-5, Bank of Canada.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.01398. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.