IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Bootstrap validity for the score test when instruments may be weak

  • Moreira, Marcelo J.
  • Porter, Jack R.
  • Suarez, Gustavo A.

It is well-known that size adjustments based on bootstrapping the t-statistic perform poorly when instruments are weakly correlated with the endogenous explanatory variable. In this paper, we provide a theoretical proof that guarantees the validity of the bootstrap for the score statistic. This theory does not follow from standard results, since the score statistic is not a smooth function of sample means and some parameters are not consistently estimable when the instruments are uncorrelated with the explanatory variable.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 149 (2009)
Issue (Month): 1 (April)
Pages: 52-64

in new window

Handle: RePEc:eee:econom:v:149:y:2009:i:1:p:52-64
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  2. Otsu, Taisuke, 2006. "Generalized Empirical Likelihood Inference For Nonlinear And Time Series Models Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 22(03), pages 513-527, June.
  3. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  4. Qumsiyeh, Maher B., 1990. "Edgeworth expansion in regression models," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 86-101, October.
  5. Nelson, C. & Startz, R., 1988. "Some Furthere Results On The Exact Small Sample Properties Of The Instrumental Variable Estimator," Working Papers 88-06, University of Washington, Department of Economics.
  6. Marcelo J. Moreira & Jack R. Porter & Gustavo A. Suarez, 2004. "Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak," NBER Technical Working Papers 0302, National Bureau of Economic Research, Inc.
  7. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  8. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
  9. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-71, November.
  10. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  11. Patrik Buggenberger & Richard Smith, 2003. "Generalized empirical likelihood estimators and tests under partial, weak and strong identification," CeMMAP working papers CWP08/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  12. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  13. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228 Elsevier.
  14. Atsushi Inoue, 2006. "A bootstrap approach to moment selection," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 48-75, 03.
  15. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  16. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:149:y:2009:i:1:p:52-64. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.