IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v149y2009i1p52-64.html
   My bibliography  Save this article

Bootstrap validity for the score test when instruments may be weak

Author

Listed:
  • Moreira, Marcelo J.
  • Porter, Jack R.
  • Suarez, Gustavo A.

Abstract

It is well-known that size adjustments based on bootstrapping the t-statistic perform poorly when instruments are weakly correlated with the endogenous explanatory variable. In this paper, we provide a theoretical proof that guarantees the validity of the bootstrap for the score statistic. This theory does not follow from standard results, since the score statistic is not a smooth function of sample means and some parameters are not consistently estimable when the instruments are uncorrelated with the explanatory variable.

Suggested Citation

  • Moreira, Marcelo J. & Porter, Jack R. & Suarez, Gustavo A., 2009. "Bootstrap validity for the score test when instruments may be weak," Journal of Econometrics, Elsevier, vol. 149(1), pages 52-64, April.
  • Handle: RePEc:eee:econom:v:149:y:2009:i:1:p:52-64
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(08)00203-0
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marcelo J. Moreira & Jack R. Porter & Gustavo A. Suarez, 2004. "Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak," Harvard Institute of Economic Research Working Papers 2048, Harvard - Institute of Economic Research.
    2. Otsu, Taisuke, 2006. "Generalized Empirical Likelihood Inference For Nonlinear And Time Series Models Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 22(03), pages 513-527, June.
    3. Atsushi Inoue, 2006. "A bootstrap approach to moment selection," Econometrics Journal, Royal Economic Society, vol. 9(1), pages 48-75, March.
    4. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
    5. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    6. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    7. Qumsiyeh, Maher B., 1990. "Edgeworth expansion in regression models," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 86-101, October.
    8. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    9. Rothenberg, Thomas J, 1988. "Approximate Power Functions for Some Robust Tests of Regression Coefficients," Econometrica, Econometric Society, vol. 56(5), pages 997-1019, September.
    10. Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-1471, November.
    11. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    12. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    13. Horowitz, Joel L., 2001. "The Bootstrap," Handbook of Econometrics,in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 52, pages 3159-3228 Elsevier.
    14. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    15. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    16. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjie Wang, 2012. "Bootstrapping Anderson-Rubin Statistic and J Statistic in Linear IV Models with Many Instruments," KIER Working Papers 810, Kyoto University, Institute of Economic Research.
    2. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "Applications of subsampling, hybrid, and size-correction methods," Journal of Econometrics, Elsevier, pages 285-305.
    3. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    4. Firmin Doko Tchatoka, 2015. "On bootstrap validity for specification tests with weak instruments," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 137-146, February.
    5. Firmin Doko Tchatoka & Wenjie Wang, 2015. "On Bootstrap Validity for Subset Anderson-Rubin Test in IV Regressions," School of Economics Working Papers 2015-01, University of Adelaide, School of Economics.
    6. Rachida Ouysse, 2014. "On the performance of block-bootstrap continuously updated GMM for a class of non-linear conditional moment models," Computational Statistics, Springer, vol. 29(1), pages 233-261, February.
    7. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    8. Noud P.A. van Giersbergen, 2011. "Bootstrapping Subset Test Statistics in IV Regression," UvA-Econometrics Working Papers 11-08, Universiteit van Amsterdam, Dept. of Econometrics.
    9. Keith Finlay & Leandro M. Magnusson, 2014. "Bootstrap Methods for Inference with Cluster-Sample IV Models," Economics Discussion / Working Papers 14-12, The University of Western Australia, Department of Economics.
    10. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:149:y:2009:i:1:p:52-64. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.