IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.08455.html
   My bibliography  Save this paper

Robust Tests for Factor-Augmented Regressions with an Application to the novel EA-MD Dataset

Author

Listed:
  • Alessandro Morico
  • Ovidijus Stauskas

Abstract

We present four novel tests of equal predictive accuracy and encompassing for out-of-sample forecasts based on factor-augmented regression. We extend the work of Pitarakis (2023a,b) to develop the inferential theory of predictive regressions with generated regressors which are estimated by using Common Correlated Effects (henceforth CCE) - a technique that utilizes cross-sectional averages of grouped series. It is particularly useful since large datasets of such structure are becoming increasingly popular. Under our framework, CCE-based tests are asymptotically normal and robust to overspecification of the number of factors, which is in stark contrast to existing methodologies in the CCE context. Our tests are highly applicable in practice as they accommodate for different predictor types (e.g., stationary and highly persistent factors), and remain invariant to the location of structural breaks in loadings. Extensive Monte Carlo simulations indicate that our tests exhibit excellent local power properties. Finally, we apply our tests to a novel EA-MD-QD dataset by Barigozzi et al. (2024b), which covers Euro Area as a whole and primary member countries. We demonstrate that CCE factors offer a substantial predictive power even under varying data persistence and structural breaks.

Suggested Citation

  • Alessandro Morico & Ovidijus Stauskas, 2025. "Robust Tests for Factor-Augmented Regressions with an Application to the novel EA-MD Dataset," Papers 2504.08455, arXiv.org.
  • Handle: RePEc:arx:papers:2504.08455
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.08455
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2003. "Do financial variables help forecasting inflation and real activity in the euro area?," Journal of Monetary Economics, Elsevier, vol. 50(6), pages 1243-1255, September.
    2. Karabiyik, Hande & Reese, Simon & Westerlund, Joakim, 2017. "On the role of the rank condition in CCE estimation of factor-augmented panel regressions," Journal of Econometrics, Elsevier, vol. 197(1), pages 60-64.
    3. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    4. Matteo Barigozzi & Claudio Lissona & Matteo Luciani, 2024. "Measuring the Euro Area Output Gap," Finance and Economics Discussion Series 2024-099, Board of Governors of the Federal Reserve System (U.S.).
    5. Francis X. Diebold, 2015. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
    6. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    7. Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
    8. Hjalmarsson, Erik, 2010. "Predicting Global Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(1), pages 49-80, February.
    9. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    10. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    11. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    12. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    13. Michele Lenza & Giorgio E. Primiceri, 2022. "How to estimate a vector autoregression after March 2020," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 688-699, June.
    14. Bai, Jushan & Ng, Serena, 2007. "Determining the Number of Primitive Shocks in Factor Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 52-60, January.
    15. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    16. De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
    17. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    18. Magdalinos, Tassos & Phillips, Peter C.B., 2009. "Limit Theory For Cointegrated Systems With Moderately Integrated And Moderately Explosive Regressors," Econometric Theory, Cambridge University Press, vol. 25(2), pages 482-526, April.
    19. Matteo Barigozzi & Claudio Lissona & Lorenzo Tonni, 2024. "Large datasets for the Euro Area and its member countries and the dynamic effects of the common monetary policy," Papers 2410.05082, arXiv.org.
    20. Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2014. "Detecting big structural breaks in large factor models," Journal of Econometrics, Elsevier, vol. 180(1), pages 30-48.
    21. Breitung, Jörg & Eickmeier, Sandra, 2011. "Testing for structural breaks in dynamic factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 71-84, July.
    22. Peter Reinhard Hansen & Allan Timmermann, 2015. "Equivalence Between Out‐of‐Sample Forecast Comparisons and Wald Statistics," Econometrica, Econometric Society, vol. 83, pages 2485-2505, November.
    23. Todd Clark & Michael McCracken, 2012. "Reality Checks and Comparisons of Nested Predictive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 53-66.
    24. Luca Margaritella & Ovidijus Stauskas, 2024. "New Tests of Equal Forecast Accuracy for Factor-Augmented Regressions with Weaker Loadings," Papers 2409.20415, arXiv.org, revised Oct 2024.
    25. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    26. Michael W. McCracken & Serena Ng, 2021. "FRED-QD: A Quarterly Database for Macroeconomic Research," Review, Federal Reserve Bank of St. Louis, vol. 103(1), pages 1-44, January.
    27. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    28. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    29. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    30. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    31. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    32. Alexei Onatski & Chen Wang, 2021. "Spurious Factor Analysis," Econometrica, Econometric Society, vol. 89(2), pages 591-614, March.
    33. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    34. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    35. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    36. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    37. Chamberlain, Gary, 1983. "Funds, Factors, and Diversification in Arbitrage Pricing Models," Econometrica, Econometric Society, vol. 51(5), pages 1305-1323, September.
    38. Serena Ng, 2021. "Modeling Macroeconomic Variations after Covid-19," NBER Working Papers 29060, National Bureau of Economic Research, Inc.
    39. Jean-Yves Pitarakis, 2023. "Direct Multi-Step Forecast based Comparison of Nested Models via an Encompassing Test," Papers 2312.16099, arXiv.org.
    40. Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
    41. Corradi, Valentina & Swanson, Norman R., 2014. "Testing for structural stability of factor augmented forecasting models," Journal of Econometrics, Elsevier, vol. 182(1), pages 100-118.
    42. Ignace De Vos & Gerdie Everaert & Vasilis Sarafidis, 2024. "A method to evaluate the rank condition for CCE estimators," Econometric Reviews, Taylor & Francis Journals, vol. 43(2-4), pages 123-155, April.
    43. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    44. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
    45. Ovidijus Stauskas & Joakim Westerlund, 2022. "Tests of Equal Forecasting Accuracy for Nested Models with Estimated CCE Factors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1745-1758, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Karen Miranda & Pilar Poncela & Esther Ruiz, 2022. "Dynamic factor models: Does the specification matter?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 397-428, May.
    3. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    4. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. Bae, Juhee, 2024. "Factor-augmented forecasting in big data," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1660-1688.
    7. Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
    8. Jack Fosten, 2016. "Forecast evaluation with factor-augmented models," University of East Anglia School of Economics Working Paper Series 2016-05, School of Economics, University of East Anglia, Norwich, UK..
    9. Gupta, Rangan & Kabundi, Alain, 2011. "A large factor model for forecasting macroeconomic variables in South Africa," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1076-1088, October.
    10. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2020. "Estimation of large dimensional conditional factor models in finance," Handbook of Econometrics, in: Steven N. Durlauf & Lars Peter Hansen & James J. Heckman & Rosa L. Matzkin (ed.), Handbook of Econometrics, edition 1, volume 7, chapter 0, pages 219-282, Elsevier.
    11. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    12. Beyhum, Jad & Striaukas, Jonas, 2024. "Testing for sparse idiosyncratic components in factor-augmented regression models," Journal of Econometrics, Elsevier, vol. 244(1).
    13. Kihwan Kim & Hyun Hak Kim & Norman R. Swanson, 2023. "Mixing mixed frequency and diffusion indices in good times and in bad: an assessment based on historical data around the great recession of 2008," Empirical Economics, Springer, vol. 64(3), pages 1421-1469, March.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.
    16. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).
    17. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    18. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    19. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2021. "Estimating and testing high dimensional factor models with multiple structural changes," Journal of Econometrics, Elsevier, vol. 220(2), pages 349-365.
    20. Baltagi, Badi H. & Kao, Chihwa & Wang, Fa, 2017. "Identification and estimation of a large factor model with structural instability," Journal of Econometrics, Elsevier, vol. 197(1), pages 87-100.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.08455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.