IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/29060.html
   My bibliography  Save this paper

Modeling Macroeconomic Variations after Covid-19

Author

Listed:
  • Serena Ng

Abstract

The coronavirus is a global event of historical proportions and just a few months changed the time series properties of the data in ways that make many pre-covid forecasting models inadequate. It also creates a new problem for estimation of economic factors and dynamic causal effects because the variations around the outbreak can be interpreted as outliers, as shifts to the distribution of existing shocks, or as addition of new shocks. I take the latter view and use covid indicators as controls to 'de-covid' the data prior to estimation. I find that economic uncertainty remains high at the end of 2020 even though real economic activity has recovered and covid uncertainty has receded. Dynamic responses of variables to shocks in a VAR similar in magnitude and shape to the ones identified before 2020 can be recovered by directly or indirectly modeling covid and treating it as exogenous. These responses to economic shocks are distinctly different from those to a covid shock, and distinguishing between the two types of shocks can be important in macroeconomic modeling post-covid.

Suggested Citation

  • Serena Ng, 2021. "Modeling Macroeconomic Variations after Covid-19," NBER Working Papers 29060, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:29060
    Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w29060.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    3. Frank Schorfheide & Dongho Song, 2024. "Real-Time Forecasting with a (Standard) Mixed-Frequency VAR During a Pandemic," International Journal of Central Banking, International Journal of Central Banking, vol. 20(4), pages 275-320, October.
    4. Kevin Moran & Dalibor Stevanovic & Adam Kader Touré, 2022. "Macroeconomic uncertainty and the COVID‐19 pandemic: Measure and impacts on the Canadian economy," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 379-405, February.
    5. Huber, Florian & Koop, Gary & Onorante, Luca & Pfarrhofer, Michael & Schreiner, Josef, 2023. "Nowcasting in a pandemic using non-parametric mixed frequency VARs," Journal of Econometrics, Elsevier, vol. 232(1), pages 52-69.
    6. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    7. Chudik, Alexander & Mohaddes, Kamiar & Pesaran, M. Hashem & Raissi, Mehdi & Rebucci, Alessandro, 2021. "A counterfactual economic analysis of Covid-19 using a threshold augmented multi-country model," Journal of International Money and Finance, Elsevier, vol. 119(C).
    8. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    9. Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
    10. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    11. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    12. Primiceri, Giorgio & Lenza, Michele, 2020. "How to Estimate a VAR after March 2020," CEPR Discussion Papers 15245, C.E.P.R. Discussion Papers.
    13. Richard Davis & Serena Ng, 2021. "Time Series Estimation of the Dynamic Effects of Disaster-Type Shock," Papers 2107.06663, arXiv.org, revised Mar 2022.
    14. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    15. Doshi, P., 2008. "Trends in recorded influenza mortality: United States, 1900-2004," American Journal of Public Health, American Public Health Association, vol. 98(5), pages 939-945.
    16. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "COVID-19 and the Costs of Deadly Disasters," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 366-370, May.
    17. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fosten, Jack, 2019. "CO2 emissions and economic activity: A short-to-medium run perspective," Energy Economics, Elsevier, vol. 83(C), pages 415-429.
    2. Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
    3. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    4. Paul Ho, 2021. "Forecasting in the Absence of Precedent," Working Paper 21-10, Federal Reserve Bank of Richmond.
    5. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino & Elmar Mertens, 2024. "Addressing COVID-19 Outliers in BVARs with Stochastic Volatility," The Review of Economics and Statistics, MIT Press, vol. 106(5), pages 1403-1417, September.
    6. Massacci, Daniele & Kapetanios, George, 2024. "Forecasting in factor augmented regressions under structural change," International Journal of Forecasting, Elsevier, vol. 40(1), pages 62-76.
    7. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
    8. Jin, Sainan & Miao, Ke & Su, Liangjun, 2021. "On factor models with random missing: EM estimation, inference, and cross validation," Journal of Econometrics, Elsevier, vol. 222(1), pages 745-777.
    9. Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
    10. Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
    11. Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
    12. Moench, Emanuel & Soofi-Siavash, Soroosh, 2022. "What moves treasury yields?," Journal of Financial Economics, Elsevier, vol. 146(3), pages 1016-1043.
    13. Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "A large Canadian database for macroeconomic analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
    14. Jianqing Fan & Kunpeng Li & Yuan Liao, 2020. "Recent Developments on Factor Models and its Applications in Econometric Learning," Papers 2009.10103, arXiv.org.
    15. Klieber, Karin, 2024. "Non-linear dimension reduction in factor-augmented vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
    16. Zongwu Cai & Xiyuan Liu, 2021. "Solving the Price Puzzle Via A Functional Coefficient Factor-Augmented VAR Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202106, University of Kansas, Department of Economics, revised Jan 2021.
    17. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    18. Gonçalves, Sílvia & McCracken, Michael W. & Perron, Benoit, 2017. "Tests of equal accuracy for nested models with estimated factors," Journal of Econometrics, Elsevier, vol. 198(2), pages 231-252.
    19. Nii Ayi Armah & Norman Swanson, 2010. "Seeing Inside the Black Box: Using Diffusion Index Methodology to Construct Factor Proxies in Large Scale Macroeconomic Time Series Environments," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 476-510.
    20. Vito Polito & Yunyi Zhang, 2021. "Tackling Large Outliers in Macroeconomic Data with Vector Artificial Neural Network Autoregression," CESifo Working Paper Series 9395, CESifo.

    More about this item

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • E0 - Macroeconomics and Monetary Economics - - General
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:29060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.