IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v175y2025ics0165188925000582.html
   My bibliography  Save this article

Sentiment-driven speculation in financial markets with heterogeneous beliefs: A machine learning approach

Author

Listed:
  • Di Francesco, Tommaso
  • Hommes, Cars

Abstract

We study an heterogenous asset pricing model in which different classes of investors coexist and evolve, switching among strategies over time according to a fitness measure. In the presence of boundedly rational agents, with biased forecasts and trend following rules, we study the effect of two types of speculation: one based on fundamentalist and the other on rational expectations. While the first is only based on knowledge of the asset underlying dynamics, the second takes also into account the behavior of other investors. We bring the model to data by estimating it on the Bitcoin Market with two contributions, relying on methods from Machine Learning. First, we construct the Bitcoin Twitter Sentiment Index (BiTSI) to proxy a time varying bias. Second, we propose a new method based on a Neural Network, for the estimation of the resulting heterogeneous agent model with rational speculators. We show that the switching finds support in the data and that while fundamentalist speculation amplifies volatility, rational speculation has a stabilizing effect on the market.

Suggested Citation

  • Di Francesco, Tommaso & Hommes, Cars, 2025. "Sentiment-driven speculation in financial markets with heterogeneous beliefs: A machine learning approach," Journal of Economic Dynamics and Control, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:dyncon:v:175:y:2025:i:c:s0165188925000582
    DOI: 10.1016/j.jedc.2025.105092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188925000582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2025.105092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shalen, Catherine T, 1993. "Volume, Volatility, and the Dispersion of Beliefs," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 405-434.
    2. Matthijs Lof, 2015. "Rational Speculators, Contrarians, and Excess Volatility," Management Science, INFORMS, vol. 61(8), pages 1889-1901, August.
    3. Armstrong, John & Black, Richard & Laxton, Douglas & Rose, David, 1998. "A robust method for simulating forward-looking models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 489-501, April.
    4. Lux, Thomas, 2009. "Rational forecasts or social opinion dynamics? Identification of interaction effects in a business climate survey," Journal of Economic Behavior & Organization, Elsevier, vol. 72(2), pages 638-655, November.
    5. Bolt, Wilko & Demertzis, Maria & Diks, Cees & Hommes, Cars & Leij, Marco van der, 2019. "Identifying booms and busts in house prices under heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 103(C), pages 234-259.
    6. Fair, Ray C & Taylor, John B, 1983. "Solution and Maximum Likelihood Estimation of Dynamic Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 51(4), pages 1169-1185, July.
    7. Thomas Lux, 2009. "Rational Forecasts or Social Opinion Dynamics? Identification of Interaction Effects in a Business Climate Survey," Post-Print hal-00720175, HAL.
    8. Boehl, Gregor & Hommes, Cars, 2025. "Rational vs. irrational beliefs in a complex world," Journal of Economic Behavior & Organization, Elsevier, vol. 232(C).
    9. Baig, Ahmed & Blau, Benjamin M. & Sabah, Nasim, 2019. "Price clustering and sentiment in bitcoin," Finance Research Letters, Elsevier, vol. 29(C), pages 111-116.
    10. Harrison Hong & Jeremy C. Stein, 2003. "Differences of Opinion, Short-Sales Constraints, and Market Crashes," The Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 487-525.
    11. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    12. Frijns, Bart & Lehnert, Thorsten & Zwinkels, Remco C.J., 2010. "Behavioral heterogeneity in the option market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2273-2287, November.
    13. Cathy Yi-Hsuan Chen & Christian M. Hafner, 2019. "Sentiment-Induced Bubbles in the Cryptocurrency Market," JRFM, MDPI, vol. 12(2), pages 1-12, April.
    14. He, Xue-Zhong & Li, Kai, 2012. "Heterogeneous beliefs and adaptive behaviour in a continuous-time asset price model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 973-987.
    15. Boswijk, H. Peter & Hommes, Cars H. & Manzan, Sebastiano, 2007. "Behavioral heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 31(6), pages 1938-1970, June.
    16. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    17. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    18. Adriana Cornea-Madeira & Cars Hommes & Domenico Massaro, 2019. "Behavioral Heterogeneity in U.S. Inflation Dynamics," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 288-300, April.
    19. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    20. Gurdgiev, Constantin & O’Loughlin, Daniel, 2020. "Herding and anchoring in cryptocurrency markets: Investor reaction to fear and uncertainty," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    21. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    22. De Long, J Bradford & Andrei Shleifer & Lawrence H. Summers & Robert J. Waldmann, 1990. "Noise Trader Risk in Financial Markets," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 703-738, August.
    23. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    24. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    25. Gardini, L. & Radi, D. & Schmitt, N. & Sushko, I. & Westerhoff, F., 2022. "Causes of fragile stock market stability," Journal of Economic Behavior & Organization, Elsevier, vol. 200(C), pages 483-498.
    26. Gardini, Laura & Radi, Davide & Schmitt, Noemi & Sushko, Iryna & Westerhoff, Frank, 2025. "On boom-bust stock market dynamics, animal spirits, and the destabilizing nature of temporarily attracting virtual fixed points," Macroeconomic Dynamics, Cambridge University Press, vol. 29, pages 1-1, January.
    27. Chiarella, Carl & He, Xue-Zhong & Zwinkels, Remco C.J., 2014. "Heterogeneous expectations in asset pricing: Empirical evidence from the S&P500," Journal of Economic Behavior & Organization, Elsevier, vol. 105(C), pages 1-16.
    28. George A. Waters, 2019. "Bubbles and rationality in bitcoin," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 48(2), July.
    29. William A. Brock & Cars H. Hommes, 1997. "A Rational Route to Randomness," Econometrica, Econometric Society, vol. 65(5), pages 1059-1096, September.
    30. Cars Hommes & Joep Sonnemans & Jan Tuinstra & Henk van de Velden, 2005. "Coordination of Expectations in Asset Pricing Experiments," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 955-980.
    31. Cars Hommes, 2021. "Behavioral and Experimental Macroeconomics and Policy Analysis: A Complex Systems Approach," Journal of Economic Literature, American Economic Association, vol. 59(1), pages 149-219, March.
    32. Guégan, Dominique & Renault, Thomas, 2021. "Does investor sentiment on social media provide robust information for Bitcoin returns predictability?," Finance Research Letters, Elsevier, vol. 38(C).
    33. Bourghelle, David & Jawadi, Fredj & Rozin, Philippe, 2022. "Do collective emotions drive bitcoin volatility? A triple regime-switching vector approach," Journal of Economic Behavior & Organization, Elsevier, vol. 196(C), pages 294-306.
    34. Jimmy E. Hilliard & Julie T. D. Ngo, 2022. "Bitcoin: jumps, convenience yields, and option prices," Quantitative Finance, Taylor & Francis Journals, vol. 22(11), pages 2079-2091, November.
    35. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    36. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    37. ter Ellen, Saskia & Hommes, Cars H. & Zwinkels, Remco C.J., 2021. "Comparing behavioural heterogeneity across asset classes," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 747-769.
    38. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    39. Aalborg, Halvor Aarhus & Molnár, Peter & de Vries, Jon Erik, 2019. "What can explain the price, volatility and trading volume of Bitcoin?," Finance Research Letters, Elsevier, vol. 29(C), pages 255-265.
    40. William A. Brock & Cars H. Hommes, 2001. "A Rational Route to Randomness," Chapters, in: W. D. Dechert (ed.), Growth Theory, Nonlinear Dynamics and Economic Modelling, chapter 16, pages 402-438, Edward Elgar Publishing.
    41. Jiri Kukacka & Ladislav Kristoufek, 2023. "Fundamental and speculative components of the cryptocurrency pricing dynamics," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    42. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    43. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    44. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    45. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    46. De Grauwe, Paul & Rovira Kaltwasser, Pablo, 2012. "Animal spirits in the foreign exchange market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1176-1192.
    47. José Parra-Moyano & Daniel Partida & Moritz Gessl & Somnath Mazumdar, 2024. "Analyzing swings in Bitcoin returns: a comparative study of the LPPL and sentiment-informed random forest models," Digital Finance, Springer, vol. 6(3), pages 427-439, September.
    48. Fisher, P. G. & Holly, S. & Hughes Hallett, A. J., 1986. "Efficient solution techniques for dynamic non-linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 10(1-2), pages 139-145, June.
    49. Yukun Liu & Aleh Tsyvinski & Xi Wu, 2022. "Common Risk Factors in Cryptocurrency," Journal of Finance, American Finance Association, vol. 77(2), pages 1133-1177, April.
    50. repec:hal:journl:hal-04448652 is not listed on IDEAS
    51. Baur, Dirk G. & Glover, Kristoffer J., 2014. "Heterogeneous expectations in the gold market: Specification and estimation," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 116-133.
    52. Schmitt, Noemi, 2021. "Heterogeneous Expectations And Asset Price Dynamics," Macroeconomic Dynamics, Cambridge University Press, vol. 25(6), pages 1538-1568, September.
    53. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saskia ter Ellen & Willem F. C. Verschoor, 2018. "Heterogeneous Beliefs and Asset Price Dynamics: A Survey of Recent Evidence," Dynamic Modeling and Econometrics in Economics and Finance, in: Fredj Jawadi (ed.), Uncertainty, Expectations and Asset Price Dynamics, pages 53-79, Springer.
    2. ter Ellen, Saskia & Hommes, Cars H. & Zwinkels, Remco C.J., 2021. "Comparing behavioural heterogeneity across asset classes," Journal of Economic Behavior & Organization, Elsevier, vol. 185(C), pages 747-769.
    3. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    4. Kukacka, Jiri & Barunik, Jozef, 2017. "Estimation of financial agent-based models with simulated maximum likelihood," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 21-45.
    5. Zhong-Qiang Zhou & Jie Li & Wei Zhang & Xiong Xiong, 2022. "Government intervention model based on behavioral heterogeneity for China’s stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    6. Hommes, Cars & in ’t Veld, Daan, 2017. "Booms, busts and behavioural heterogeneity in stock prices," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 101-124.
    7. Bolt, Wilko & Demertzis, Maria & Diks, Cees & Hommes, Cars & Leij, Marco van der, 2019. "Identifying booms and busts in house prices under heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 103(C), pages 234-259.
    8. Roberto Dieci & Xue-Zhong He, 2018. "Heterogeneous Agent Models in Finance," Research Paper Series 389, Quantitative Finance Research Centre, University of Technology, Sydney.
    9. Filippo Gusella & Giorgio Ricchiuti, 2022. "A State-Space Approach for Time-Series Prediction of an Heterogeneous Agent Model," Working Papers - Economics wp2022_20.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    10. Anufriev, Mikhail & Lamantia, Fabio & Radi, Davide & Tichy, Tomas, 2025. "Leaning against the wind in the New Keynesian model with heterogeneous expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 172(C).
    11. Campiglio, Emanuele & Lamperti, Francesco & Terranova, Roberta, 2024. "Believe me when I say green! Heterogeneous expectations and climate policy uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 165(C).
    12. Anufriev, Mikhail & Chernulich, Aleksei & Tuinstra, Jan, 2018. "A laboratory experiment on the heuristic switching model," Journal of Economic Dynamics and Control, Elsevier, vol. 91(C), pages 21-42.
    13. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    14. Hommes, Cars, 2018. "Behavioral & experimental macroeconomics and policy analysis: a complex systems approach," Working Paper Series 2201, European Central Bank.
    15. Kukacka, Jiri & Sacht, Stephen, 2023. "Estimation of heuristic switching in behavioral macroeconomic models," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    16. Filippo Gusella & Giorgio Ricchiuti, 2024. "Endogenous cycles in heterogeneous agent models: a state-space approach," Journal of Evolutionary Economics, Springer, vol. 34(4), pages 739-782, December.
    17. Zheng, Min & Liu, Ruipeng & Li, Youwei, 2018. "Long memory in financial markets: A heterogeneous agent model perspective," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 38-51.
    18. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    19. Lines Marji & Westerhoff Frank, 2012. "Effects of Inflation Expectations on Macroeconomic Dynamics: Extrapolative Versus Regressive Expectations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(4), pages 1-30, October.
    20. Anufriev, Mikhail & Bao, Te & Tuinstra, Jan, 2016. "Microfoundations for switching behavior in heterogeneous agent models: An experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 129(C), pages 74-99.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D84 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Expectations; Speculations
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:175:y:2025:i:c:s0165188925000582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.