IDEAS home Printed from https://ideas.repec.org/p/zbw/iwhdps/iwh-11-11.html
   My bibliography  Save this paper

The Importance of Estimation Uncertainty in a Multi-Rating Class Loan Portfolio

Author

Listed:
  • Dannenberg, Henry

Abstract

This article seeks to make an assessment of estimation uncertainty in a multi-rating class loan portfolio. Relationships are established between estimation uncertainty and parameters such as probability of default, intra- and inter-rating class correlation, degree of inhomogeneity, number of rating classes used, number of debtors and number of historical periods used for parameter estimations. In addition, by using an exemplary portfolio based on Moody's ratings, it becomes clear that estimation uncertainty does indeed have an effect on interest rates.

Suggested Citation

  • Dannenberg, Henry, 2011. "The Importance of Estimation Uncertainty in a Multi-Rating Class Loan Portfolio," IWH Discussion Papers 11/2011, Halle Institute for Economic Research (IWH).
  • Handle: RePEc:zbw:iwhdps:iwh-11-11
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/52396/1/671000764.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    2. Hamerle, Alfred & Knapp, Michael & Liebig, Thilo & Wildenauer, Nicole, 2005. "Incorporating prediction and estimation risk in point-in-time credit portfolio models," Discussion Paper Series 2: Banking and Financial Studies 2005,13, Deutsche Bundesbank.
    3. Sibbertsen, Philipp & Stahl, Gerhard & Luedtke, Corinna, 2008. "Measuring Model Risk," Hannover Economic Papers (HEP) dp-409, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. Kerkhof, F.L.J. & Melenberg, B. & Schumacher, J.M., 2002. "Model Risk and Regulatory Capital," Discussion Paper 2002-27, Tilburg University, Center for Economic Research.
    5. Tarashev, Nikola, 2010. "Measuring portfolio credit risk correctly: Why parameter uncertainty matters," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2065-2076, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Stanescu & Radu Tunaru, 2013. "Quantifying the uncertainty in VaR and expected shortfall estimates," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 15, pages 357-372, Edward Elgar Publishing.
    2. Valerio Vacca, 2011. "An unexpected crisis? Looking at pricing effectiveness of different banks," Temi di discussione (Economic working papers) 814, Bank of Italy, Economic Research and International Relations Area.
    3. Genest, Benoit & Cao, Zhili, 2014. "Value-at-Risk in turbulence time," MPRA Paper 62906, University Library of Munich, Germany.
    4. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc S., 2006. "Accurate Value-at-Risk forecast with the (good old) normal-GARCH model," CFS Working Paper Series 2006/23, Center for Financial Studies (CFS).
    5. Wagner Piazza Gaglianone & Luiz Renato Lima & Oliver Linton & Daniel R. Smith, 2011. "Evaluating Value-at-Risk Models via Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 150-160, January.
    6. Kerkhof, F.L.J., 2003. "Model risk analysis for risk management and option pricing," Other publications TiSEM 01692df5-4c2d-4ed2-8108-4, Tilburg University, School of Economics and Management.
    7. Alexandros Gabrielsen & Axel Kirchner & Zhuoshi Liu & Paolo Zagaglia, 2015. "Forecasting Value-At-Risk With Time-Varying Variance, Skewness And Kurtosis In An Exponential Weighted Moving Average Framework," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 1-29.
    8. Wasel Shadat, 2011. "On the Nonparametric Tests of Univariate GARCH Regression Models," Economics Discussion Paper Series 1115, Economics, The University of Manchester.
    9. Aussenegg, Wolfgang & Resch, Florian & Winkler, Gerhard, 2011. "Pitfalls and remedies in testing the calibration quality of rating systems," Journal of Banking & Finance, Elsevier, vol. 35(3), pages 698-708, March.
    10. Sibbertsen, Philipp & Stahl, Gerhard & Luedtke, Corinna, 2008. "Measuring Model Risk," Hannover Economic Papers (HEP) dp-409, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Goel, Tirupam & Lewrick, Ulf & Tarashev, Nikola, 2020. "Bank capital allocation under multiple constraints," Journal of Financial Intermediation, Elsevier, vol. 44(C).
    12. International Monetary Fund, 2014. "Switzerland: Technical Note-Systemic Risk and Contagion Analysis," IMF Staff Country Reports 2014/268, International Monetary Fund.
    13. Claußen, Arndt & Rösch, Daniel & Schmelzle, Martin, 2019. "Hedging parameter risk," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 111-121.
    14. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    15. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    16. Bauwens Luc & Storti Giuseppe, 2009. "A Component GARCH Model with Time Varying Weights," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
    17. Kerkhof, Jeroen & Melenberg, Bertrand, 2004. "Backtesting for risk-based regulatory capital," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1845-1865, August.
    18. Gourieroux, Christian & Tiomo, Andre, 2019. "The Evaluation of Model Risk for Probability of Default and Expected Loss," MPRA Paper 95795, University Library of Munich, Germany.
    19. Roberto Baviera, 2020. "The measure of model risk in credit capital requirements," Papers 2010.08028, arXiv.org.
    20. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.

    More about this item

    Keywords

    credit portfolio risk; estimation uncertainty; bootstrapping; economic equity; Kreditrisikobewertung; Schätzunsicherheit; Bootstrapping; ökonomisches Eigenkapital;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:iwhdps:iwh-11-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwhhhde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.