IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting Realized Volatility Using A Nonnegative Semiparametric Model

  • Daniel Preve

    (Uppsala University, Department of Statistics)

  • Anders Eriksson
  • Jun Yu

    (Sim Kee Boon Institute for Financial Economics, Singapore Management University)

This paper introduces a parsimonious and yet flexible nonnegative semiparametric model to forecast financial volatility. The new model extends the linear nonnegative autoregressive model of Barndorff-Nielsen & Shephard (2001) and Nielsen & Shephard (2003) by way of a power transformation. It is semiparametric in the sense that the dependency structure and distributional form of its error component are left unspecified. The statistical properties of the model are discussed and a novel estimation method is proposed. Simulation studies validate the new estimation method and suggest that it works reasonably well in finite samples. The out-of-sample performance of the proposed model is evaluated against a number of standard methods, using data on S&P 500 monthly realized volatilities. The competing models include the exponential smoothing method, a linear AR(1) model, a log-linear AR(1) model, and two long-memory ARFIMA models. Various loss functions are utilized to evaluate the predictive accuracy of the alternative methods. It is found that the new model generally produces highly competitive forecasts.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.smu.edu.sg/institutes/skbife/downloads/CoFiE/Working%20Papers/Forecasting%20Realized%20Volatility%20using%20a%20nonnegative%20Semiparametric%20Model.pdf
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify (Sim Kee Boon Institute for Financial Economics)


Download Restriction: no

Paper provided by Sim Kee Boon Institute for Financial Economics in its series Working Papers with number CoFie-02-2007.

as
in new window

Length: 39 Pages
Date of creation:
Date of revision:
Publication status: Published in SMU-SKBI CoFie Working Paper
Handle: RePEc:skb:wpaper:cofie-02-2007
Contact details of provider: Postal: 50 Stamford Road, Singapore 178903
Phone: (65) 6828 0877
Fax: (65) 6828 0888
Web page: http://www.smu.edu.sg/institutes/skbife/index.asp

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Katsumi Shimotsu & Peter C.B. Phillips, 2002. "Exact Local Whittle Estimation of Fractional Integration," Cowles Foundation Discussion Papers 1367, Cowles Foundation for Research in Economics, Yale University, revised Jul 2004.
  2. Eric Ghysels & Andrew Harvey & Éric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
  3. Gonçalves, Sílvia & Meddahi, Nour, 2011. "Box-Cox transforms for realized volatility," Journal of Econometrics, Elsevier, vol. 160(1), pages 129-144, January.
  4. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  5. Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
  6. Fernandes, Marcelo & Grammig, Joachim, 2003. "A family of autoregressive conditional duration models," Economics Working Papers (Ensaios Economicos da EPGE) 501, FGV/EPGE Escola Brasileira de Economia e Finanças, Getulio Vargas Foundation (Brazil).
  7. Nour Meddahi & Éric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
  8. MEDDAHI, Nour & RENAULT, Éric, 1998. "Aggregations and Marginalization of GARCH and Stochastic Volatility Models," Cahiers de recherche 9818, Universite de Montreal, Departement de sciences economiques.
  9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  10. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
  11. Comte, F. & Renault, E., 1996. "Long Memory in Continuous Time Stochastic Volatility Models," Papers 96.406, Toulouse - GREMAQ.
  12. Fan, Jianqing & Fan, Yingying & Jiang, Jiancheng, 2007. "Dynamic Integration of Time- and State-Domain Methods for Volatility Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 618-631, June.
  13. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  14. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
  15. Willa W. Chen & Rohit S. Deo, 2004. "Power transformations to induce normality and their applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 117-130.
  16. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302.
  17. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
  18. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
  19. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  20. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  21. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
  22. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  23. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-58, February.
  24. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
  25. Deo, Rohit & Hurvich, Clifford & Lu, Yi, 2006. "Forecasting realized volatility using a long-memory stochastic volatility model: estimation, prediction and seasonal adjustment," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 29-58.
  26. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.
  27. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
  28. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  29. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
  30. Peter C.B. Phillips, 1985. "Time Series Regression with a Unit Root," Cowles Foundation Discussion Papers 740R, Cowles Foundation for Research in Economics, Yale University, revised Feb 1986.
  31. Lopez, Jose A, 2001. "Evaluating the Predictive Accuracy of Volatility Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(2), pages 87-109, March.
  32. Chung, Ching-Fan & Baillie, Richard T, 1993. "Small Sample Bias in Conditional Sum-of-Squares Estimators of Fractionally Integrated ARMA Models," Empirical Economics, Springer, vol. 18(4), pages 791-806.
  33. Shephard, Neil (ed.), 2005. "Stochastic Volatility: Selected Readings," OUP Catalogue, Oxford University Press, number 9780199257201, March.
  34. B. Nielsen & N. Shephard, 2003. "Likelihood analysis of a first-order autoregressive model with exponential innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 337-344, 05.
  35. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  36. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
  37. Davis, Richard A. & McCormick, William P., 1989. "Estimation for first-order autoregressive processes with positive or bounded innovations," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 237-250, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:skb:wpaper:cofie-02-2007. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sim Kee Boon Institute for Financial Economics)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.