IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Linear programming-based estimators in nonnegative autoregression

Listed author(s):
  • Preve, Daniel

This note studies robust estimation of the autoregressive (AR) parameter in a nonlinear, nonnegative AR model driven by nonnegative errors. It is shown that a linear programming estimator (LPE), considered by Nielsen and Shephard (2003) among others, remains consistent under severe model misspecification. Consequently, the LPE can be used to test for, and seek sources of, misspecification when a pure autoregression cannot satisfactorily describe the data generating process, and to isolate certain trend, seasonal or cyclical components. Simple and quite general conditions under which the LPE is strongly consistent in the presence of serially dependent, non-identically distributed or otherwise misspecified errors are given, and a brief review of the literature on LP-based estimators in nonnegative autoregression is presented. Finite-sample properties of the LPE are investigated in an extensive simulation study covering a wide range of model misspecifications. A small scale empirical study, employing a volatility proxy to model and forecast latent daily return volatility of three major stock market indexes, illustrates the potential usefulness of the LPE.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0378426615002216
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Banking & Finance.

Volume (Year): 61 (2015)
Issue (Month): S2 ()
Pages: 225-234

as
in new window

Handle: RePEc:eee:jbfina:v:61:y:2015:i:s2:p:s225-s234
DOI: 10.1016/j.jbankfin.2015.08.010
Contact details of provider: Web page: http://www.elsevier.com/locate/jbf

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Andrews, Beth & Davis, Richard A., 2013. "Model identification for infinite variance autoregressive processes," Journal of Econometrics, Elsevier, vol. 172(2), pages 222-234.
  2. Mariano, Roberto S. & Preve, Daniel, 2012. "Statistical tests for multiple forecast comparison," Journal of Econometrics, Elsevier, vol. 169(1), pages 123-130.
  3. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
  4. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
  5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  6. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
  7. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  8. Neil Shephard & Kevin Sheppard, 2010. "Realising the future: forecasting with high-frequency-based volatility (HEAVY) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 197-231.
  9. Markku Lanne, 2006. "A Mixture Multiplicative Error Model for Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 594-616.
  10. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
  11. B. Nielsen & N. Shephard, 2003. "Likelihood analysis of a first-order autoregressive model with exponential innovations," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 337-344, May.
  12. Preve, Daniel & Medeiros, Marcelo C., 2011. "Linear programming-based estimators in simple linear regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 128-136.
  13. repec:adr:anecst:y:2000:i:60 is not listed on IDEAS
  14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
  15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  16. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  17. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2008. "Designing Realized Kernels to Measure the ex post Variation of Equity Prices in the Presence of Noise," Econometrica, Econometric Society, vol. 76(6), pages 1481-1536, November.
  18. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
  19. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  20. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  21. Shiqing Ling, 2005. "Self-weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393.
  22. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
  23. Hansen, Peter R. & Lunde, Asger, 2014. "Estimating The Persistence And The Autocorrelation Function Of A Time Series That Is Measured With Error," Econometric Theory, Cambridge University Press, vol. 30(01), pages 60-93, February.
  24. Davis, Richard A. & McCormick, William P., 1989. "Estimation for first-order autoregressive processes with positive or bounded innovations," Stochastic Processes and their Applications, Elsevier, vol. 31(2), pages 237-250, April.
  25. Feigin, Paul D. & Resnick, Sidney I., 1994. "Limit distributions for linear programming time series estimators," Stochastic Processes and their Applications, Elsevier, vol. 51(1), pages 135-165, June.
  26. Im, Eric Iksoon & Hammes, David L. & Wills, Douglas T., 2006. "Stationarity Condition For Ar Index Process," Econometric Theory, Cambridge University Press, vol. 22(01), pages 164-168, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:61:y:2015:i:s2:p:s225-s234. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.